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Negative obstacles for field autonomous land vehicles (ALVs) refer to ditches, pits, or terrain with a negative
slope, which will bring risks to vehicles in travel. This paper presents a feature fusion based algorithm (FFA)
for negative obstacle detection with LiDAR sensors. The main contributions of this paper are fourfold: (1) A
novel three-dimensional (3-D) LiDAR setup is presented. With this setup, the blind area around the vehicle is
greatly reduced, and the density of LiDAR data is greatly improved, which are critical for ALVs. (2) On the
basis of the proposed setup, a mathematical model of the point distribution of a single scan line is deduced,
which is used to generate ideal scan lines. (3) With the mathematical model, an adaptive matching filter based
algorithm (AMFA) is presented to implement negative obstacle detection. Features of simulated obstacles in
each scan line are employed to detect the real negative obstacles. They are supposed to match with features of
the potential real obstacles. (4) Grounded on AMFA algorithm, a feature fusion based algorithm is proposed.
FFA algorithm fuses all the features generated by different LiDARs or captured at different frames. Bayesian
rule is adopted to estimate the weight of each feature. Experimental results show that the performance of the
proposed algorithm is robust and stable. Compared with the state-of-the-art techniques, the detection range is
improved by 20%, and the computing time is reduced by an order of two magnitudes. The proposed algorithm
had been successfully applied on two ALVs, which won the champion and the runner-up in the “Overcome
Danger 2014” ground unmanned vehicle challenge of China. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

A field autonomous land vehicle (ALV) is a kind of robot
that can perform desired tasks without human guidance in
a field environment. To drive safely, both positive and neg-
ative obstacles should be detected by the vehicle as far as
possible (Zhou et al., 2012). Much attention has been paid to
obstacle detection and terrain analysis (Shang, Li, Ye, & He,
2013; Chen Tongtong, Dai Bin, & Daxue, 2013), but still few
ALVs could drive well in a field environment. The issue of
positive obstacle detection is widely investigated, and many
distinguished detection algorithms have come forth (Pedro
Santana & Barata, 2010). Negative obstacles for vehicles re-
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fer to ditches, pits, or terrain with a negative slope, which
are dangerous factors in travel. Due to its negative proper-
ties, negative obstacle detection from a distance is still a big
challenge: because the negative obstacle is below the ground
level and therefore hard to be viewed by vehicle’s sensors.

On the basis of sensors employed in tasks, negative ob-
stacle detection is usually classified into three primary kinds
in literatures. In the first kind, a thermal infrared camera is
employed. In the second kind, two cameras are introduced
to create a three-dimensional (3-D) stereo vision (Wu &
He, 2011). In the third kind, LiDARs are adopted in both
positive and negative obstacle detections (Larson & Trivedi,
2011; Heckman, Lalonde, Vandapel, & Hebert, 2007).

In traditional obstacle detection methods (Thrun et al.,
2006; Kammel et al., 2008), LiDAR data are first mapped
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Figure 1. The proposed setup of 3-D LiDARs on our ALV platform: two compact HDL-32 LiDARs are mounted on the two sides
of the vehicle top with a same fixed angle (labeled by a red circle); another HDL-64 LiDAR is upright equipped on the middle of
the vehicle top for comparison (labeled by a blue circle). This vehicle won the champion in the “Overcome Danger 2014” ground
unmanned vehicle challenge of China, the background is the challenge spot.

onto a grid map (in order to reduce a 3-D point cloud into
a 2.5-D map), in which the maximal value, the minimal
value, and the median value are computed and marked in
each grid. The potential obstacles can be detected in each
grid cell by comparing the marked values or analyzing
the relationship between adjacent grids. However, in a
field environment, terrain may not be even, and only a few
parts of the negative obstacle could be viewed by onboard
sensors. The depth of the negative obstacle in the grid map
would not be salient. Therefore, the traditional grid map
based method would not be sufficient for detection in a field
environment. In this paper, the relationship between adja-
cent scan points in the same scan line is employed. There
are two advantages: first, the relationship between adjacent
scan points won’t be affected by the ground’s bumpiness;
second, instead of detecting obstacles from the whole grid
map, this algorithm reduces the computation complexity.

This paper presents a LiDAR feature fusion based
algorithm (FFA) to fulfill the negative obstacle detection for
field ALVs. First, a novel LiDAR setup method is presented:
two compact 3-D LiDARs are mounted on the two sides of
the vehicle roof, as shown in Figure 1. The proposed new

setup has two merits: (1) the blind region around the vehicle
is greatly reduced, which is very important for the field ALV
driving on narrow roads or making a turn. (2) Compared
to the upright setup in the traditional way, the density of
LiDAR data is greatly improved, which is very beneficial
to detect both positive and negative obstacles. Based on the
novel setup, a mathematical model of the point distribution
of a single scan line is deduced. Then, two negative obstacle
detection algorithms, an adaptive matching filter based
algorithm (AMFA) and a feature fusion based algorithm are
presented on the mathematical model. Experimental results
show that the proposed algorithm is valid and reliable.
This proposed algorithm has been successfully applied in
two ALVs, which won the champion and the runner-up in
the “Overcome Danger 2014” ground unmanned vehicle
challenge of China (Figure 1 shows our ALV that won the
champion, the background is the challenge spot).

The remainder of this paper is organized as follows.
Section 2 reviews some related works on negative obstacle
detection. Section 3 discusses the drawbacks of the tradi-
tional setup and describes the details of the proposed setup
method. In Section 4, a mathematical model of the point
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distribution for a single scan line is deduced, which is used
to generate an ideal scan line to simulate the real scan line.
In Section 5, an AMFA is proposed. In Section 6, based
on AMFA algorithm, an FFA is introduced to improve the
detection performance. In Section 7, experimental results
show that the proposed algorithm is robust and stable.
Section 8 concludes the paper.

2. RELATED WORKS

Negative obstacle detection is a key module in field ALVs,
which has received massive attention. As stated in the in-
troduction, three ways are always carried out to implement
negative obstacle detection. The first one was to use a ther-
mal infrared camera (Matthies & Rankin, 2003). The princi-
ple was that the negative obstacle tended to be warmer than
the surrounding terrain at night. By detecting the warmer
region in the thermal image, the potential negative obstacles
could be detected. The limitation was that it only worked
at night, and the temperature of the terrain tended to be af-
fected by weather conditions (A. Rankin & Matthies, 2007).
In addition, living organisms, such as animals or leaves near
the obstacles could also lead to temperature rise.

The second method was to analyze the geometrical
character of the negative obstacle from images or stereo
visions. An image sequence based negative obstacle detec-
tion algorithm was proposed in paper (Wu & He, 2011), in
which both color appearance models and geometrical cues
were extracted for detection. In that algorithm, when neg-
ative obstacles were far from the vehicle, color appearance
models were used as the principal cues for detection; when
negative obstacles went nearer, geometrical cues were ex-
tracted from the stereo vision for detection. Paper (Fazli,
Dehnavi, & Moallem, 2011) also developed a computer vi-
sion algorithm for negative obstacle detection based on the
stereo vision technique. The limitation of the vision based
algorithm was that the camera could be easily disturbed by
illuminations. In addition, the complex texture of a field en-
vironment would bring great trouble for feature detection
from images.

Recently LiDAR is widely applied in obstacle detection
since they can accurately get the range information (Larson
& Trivedi, 2011; Han et al., 2012). The TerraMax vehicle,
one of the five vehicles that has successfully finished the
DARPA Grand Challenge desert race in 2005 (Braid, Broggi,
& Schmiedel, 2006), employed two single line LiDARs to de-
tect negative obstacles. In their task, negative obstacles were
mainly presented as negative road edges or cliff edges, be-
cause small ditches or pits in the road surface would not
bring risks to TerraMax vehicle. Their algorithm to detect
negative road edges was designed as follows: translate the
LiDAR data into a local coordinate and compare the rela-
tive heights of neighboring scan points. During the process,
a history of scan data were maintained in a database (simi-
lar to a global map). Detection operation was implemented

in that database, and these negative height discontinuities
in the database would be considered as potential negative
obstacles. To improve the detection performance, multi-cue
detection approaches by different kinds of sensors were also
widely employed (A. Rankin & Matthies, 2007; Manduchi,
Castano, Talukder, & Matthies, 2005; Dima, Vandapel, &
Hebert, 2004). In paper (A. Rankin & Matthies, 2007), both
the geometry based cues from the stereo range data and
the thermal signature based cue from thermal infrared im-
agery were applied for negative obstacle detection. Paper
(Manduchi et al., 2005) tried to combine two sensors, a color
stereo camera and a single line LiDAR, to implement detec-
tion. In that algorithm, it analyzed the slope of each surface
patch before the vehicle, which was generated from the
color stereo camera; then those identified patches represent
a hurdle for the vehicle. Paper (Dima et al., 2004) considered
obstacle detection as an inference problem, since no sensor
could directly measure “obstacleness”: the sensors needed
to infer information about obstacles from measurements of
colors, temperatures or shapes. Thus, they combined color
and infrared (IR) imagery with range information from a
single line LiDAR for obstacle detection.

Nowadays, multi-line LiDAR becomes more and more
popular in both positive and negative obstacle detections. A
Negative Obstacle DetectoR (NODR) based algorithm was
introduced in paper (Larson & Trivedi, 2011), in which a
HDL-64 LiDAR was selected as the on-board sensor. That
algorithm “erred on the side of detecting negative obstacles
generously” and then labeled them as potential negative
obstacles. Then, NODR classified these potential negative
obstacles by detecting gaps, an absence of data, where there
could exist a real ditch, pit, cliff, or a negative slope.

Paper (Heckman et al., 2007) also used a HDL-64
LiDAR to carry out obstacle detection. In that paper, a
missing data interpretation based approach was adopted
to label the potential negative obstacles. Three steps were
contained in that approach: “the 3-D data accumulation and
low level classification, the 3-D occluder propagation, and
the context-based occlusion labeling”. However, when the
negative obstacle was far away from the vehicle, the height
of the trailing edge was very small in LiDAR data, which
made it very hard to distinguish the negative obstacle from
ground in a field environment.

A ground segmentation method with LiDAR is another
choice in obstacle detection. In paper (Larson, Trivedi, &
Bruch, 2011), the off-road terrain was first analyzed ac-
cording to a point cloud produced by a 3-D LiDAR, and
then the potential hazards were determined above or under
the ground. Paper (Morton & Olson, 2011) also described
a height-length-density (HLD) terrain classifier that gener-
alized some prior methods and provided a unified mech-
anism for both positive and negative obstacle detections.
Similar works had also been carried out in our team (Chen
et al., 2013): an algorithm for real-time segmenting 3-D scans
of various terrains was presented. However, the ground
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Figure 2. The mainstream ALVs: 3-D LiDARs are upright fixed on these platforms.

segmentation based method was not sufficient in a field en-
vironment. For example, when the LiDAR was fixed at a
height of H = 2 m, and the distance between the pit and the
vehicle D = 8 m. Suppose the width of this pits was 0.6 m.
In an ideal case, as far as 0.15 m of the depth of the pit can be
viewed by the LiDAR. But there usually exited a bumpiness
of 0.15 m on the ground of surface in a field environment.
Therefore, that ground segmentation based algorithm can’t
operate in a field environment.

To improve the traditional grid map based algorithm,
paper (Montemerlo & Thrun, 2006) presented a multi-grid
representation approach to detect negative obstacles, by
combining maps with different resolutions. The map chosen
for each detection depended on the overall range: the fur-
ther a detection point, the coarser the corresponding grid.
The key of this approach was to have such an information-
solution map that was generated by a simultaneous localiza-
tion and mapping (SLAM) algorithm. Unfortunately, SLAM
itself in a field environment is a difficult problem.

Sinha et al. successfully applied their gap detection
approach on an urban search and rescue robotic recently
(Sinha & Papadakis, 2013). The key contribution of that
paper was processing 3-D range data by using 2-D im-
age algorithm: (Page 1) “the proposed approach is based
on the application of efficient image morphological opera-
tions for noise reduction and border following the detection
and grouping of gaps.” The capability of the proposed ap-
proach mainly depended on the LiDAR data density, which
was used to generate a 3-D point cloud. However, this pa-
per didn’t explain how to generate the LiDAR cloud and its
density.

Three-dimensional LiDARs are also employed for neg-
ative obstacle detection in this presented paper. Consider-
ing that the ground could be bumpy in a field environment,
instead of the traditional grid map, features generated by
adjacent points are adopted in the proposed algorithm. A
novel 3-D LiDAR setup is first introduced to improve the
LiDAR data density. Under this setup, the scan line of the
LiDAR becomes much denser, which is very beneficial in
detection. Based on this setup, a mathematical model of the
point distribution for a single scan line is deduced. With
this mathematical model, an AMFA algorithm and an FFA
algorithm are presented for negative obstacle detection. Ex-
perimental results show that the proposed algorithms are
robust and stable.

3. A NOVEL SETUP METHOD OF 3-D LIDARS

Three-dimensional LiDARs are widely applied on ALVs for
obstacle detection. A type of velodyne HDL-64E LiDAR is
widely adopted in mainstream ALVs, such as in Google
self-driving car, KIT’s AnnieWAY (Kammel et al., 2008),
Stanford’s Junior (Montemerlo et al., 2008), the vehicle in
paper (Häselich et al., 2012), and the vehicle in our own
team (Chen et al., 2013) (shown in Figure 2).

3.1. Drawbacks of the Traditional Upright Setup

Three-dimensional LiDARs were usually equipped upright
on the vehicle roof in literatures. There are two drawbacks
of the upright setup: first, a large blind region would be
produced around the vehicle. The blind area might not be
fatal to the ALV when driving in structured flat environ-
ments, for roads in these environments are wide enough
and the borders on two sides could help keep the vehicle
safe (Chris Urmson & etc, 2008). However, in a field envi-
ronment, the blind area would bring mortal risks to the ve-
hicle, for roads in the field are usually narrow and unstruc-
tured with ditches and pits. Under the traditional upright
setup, the blind region around the vehicle can be analyzed
as follows (Figure 3): the distance from the blind region to
the side of the vehicle is B1 = W1 × (H1 + H2)/H1 − W1,
where W1 is the half width of the vehicle, H1 is the height
of the mounted LiDAR, and H2 is the height of the vehi-
cle. The size of the blind region in front of the vehicle is
B2 = W2 × (H1 + H2)/H1 − W2, where W2 is the distance
from the LiDAR to the head of the vehicle. The blind areas
are shown as in Figure 3.

The blind region produced in experiments under the
traditional setup is shown in Figure 4. Figure 4 shows the
visible region of an ALV by a LiDAR sensor. The result in
Figure 4 is offered by (Geiger, Lenz, & Urtasun, 2012), in
which the width of AnnieWAY is about 2.2 m, while the
diameter of the blind region is longer than 8 m. It is very
dangerous if obstacles appear in this region or if the ALV
makes a turn. In addition, as the sensor head spins, each
laser horizontally generates points of a high density, but the
spacing between adjacent scan lines becomes sparser as the
distance from the sensor increases (W. Shane Grant & Itti,
2013). As shown in Figure 4, the distance between two scan
lines is as sparse as 0.5 m when the scanned lines is 10 m
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Figure 3. Analysis of the blind area under the traditional setup of a 3-D LiDAR.

Figure 4. Analysis of the blind area under the traditional setup of a 3-D LiDAR in real experiments. This figure is offered by
(Geiger et al., 2012).

away from the vehicle. It is almost impossible to identify
obstacles when the width of the obstacle is smaller than
0.5 m.

3.2. Details of the Novel Setup of 3-D LiDAR

Concerning the drawbacks of the traditional upright setup,
this paper presents a novel setup of 3-D LiDAR to over-
come those drawbacks. The proposed 3-D LiDAR setup
is illustrated in Figure 1. Two LiDARs are mounted on
the two sides of the vehicle top: one is toward the left
and the other is toward the right. Both are equally angled
forward.

There are three rules to obey in this setup: (1) make
sure that no lasers from two LIDARs illuminate each other
directly; otherwise, the sensors will be damaged; (2) the
visual range around the vehicle depends on θ (Fig. 5(a));
(3) the visual range in front of the vehicle and the region
of overlapped scans depends on φ (Figure 5(b)). The visual
range with the proposed setup is shown in Figure 5, in which
angles and their corresponding visual ranges are shown on
two viewpoints: a front view and a top view. The overlapped

area, labeled in Figure 5(b), greatly improves the detection
capability.

From Figure 5(b), we can see the blind area around the
vehicle is reduced markedly with the novel setup. The re-
gion on two sides is now visible to the relevant LiDAR. The
front region is scanned by both LiDARs, which greatly en-
hances the resolution and improves the scene understand-
ing capability. Under this setup, the geometrical characters
of the negative obstacle in the LiDAR data become much
more distinct than that under the traditional way. With
this new setup, negative obstacle detection becomes more
reliable.

3.3. Comparison

Experiments are designed to evaluate the benefit from the
proposed setup. A pair of HDL-32E compact LiDARs is
selected under the proposed setup on our ALV platform
(Figure1). Another HDL-64 LiDAR is fixed upright in the
center of the vehicle top for comparison (Figure 1). Fifteen
objects, with the same height of 0.5 m, are scattered around
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Figure 5. Details of the proposed setup. The visual range depends on θ and φ.

Figure 6. The visual range comparison experiments: between the traditional upright setup and the proposed setup.

the vehicle to check the visual range of all LiDARs (shown
in Figure 6).

Figure 7(a) shows the visual range generated un-
der the proposed setup by two HDL-32 LiDARs and
Figure 7(b) shows the visual range generated under the
traditional upright setup by an HDL-64 LiDAR. The distri-
bution of LiDARs and objects are labeled in Figure 6. It is
found that most of the objects can be viewed by LiDARs
under the proposed setup, while many objects get lost in
the compared view. These objects would bring risks to the
ALV, especially in a field environment. It can be inferred
that the proposed setup can practically benefit the ALV.

Another advantage of the proposed setup is that the
scan line is much denser in the range of interest (ROI).
With this new setup, the scan range in front of the vehi-

cle overlaps in the experiment, which means more points
are distributed in this region. Thus, the proposed setup im-
proves the resolution of the LiDAR for obstacle detection.
Another experiment is specially designed to demonstrate
this improvement (Figure 8). Two obstacles (one of them is
a person) are standing in front of the vehicle: one is 6 meters
away from the vehicle, labeled as O1; the other is 9 meters
away, labeled as O2. Both obstacles can be viewed by three
LiDARs.

To demonstrate the benefit of the proposed setup,
the number of LiDAR points distributed on obstacles are
listed in Table I. From Table I, we can read that obstacles
get more distributed LiDAR points under the proposed
setup, which means the two obstacles are more easily to be
detected.

Journal of Field Robotics DOI 10.1002/rob
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Figure 7. The comparison experiments shows the visual ranges of two setups: (a) shows the visual range generated under the
proposed setup; (b) shows the visual range generated under the traditional way.

4. THE MATHEMATICAL MODEL OF THE PROPOSED
SETUP

With the proposed setup, the 3-D data density is improved
remarkably, and the geometrical character of the negative
obstacle is much more salient than that with the traditional
setup. With this novel setup, a mathematical model of the
point distribution of a single scan line is deduced. The
deduced mathematical model is applied in the following
AMFA algorithm and FFA algorithm.

4.1. Difference Between the Scan Point
Distributions Under Two Setups

The geometrical character of a typical negative obstacle is
shown in Figure 9(a). L specifies the width of the obstacle,
and H specifies the height of the mounted LiDAR. The scan
lines are distributed over the obstacle, and D specifies the
distance between LiDAR and the obstacle.

Two cues are widely adopted in negative obstacle de-
tection. One is the distance between two adjacent scan
points. The distance between the scan points on the obstacle
will become much longer if a negative obstacle appears. As
shown in Figure 9(a), dP1P2 is much bigger than dP1P ′

2
when

a pit is scanned by the LiDAR scan line. In addition, the
distance between the proceeding scan points will become
shorter than usual. For example, dP2P3 is much smaller than
dp′

2P ′
3
. This is the principal geometrical character of negative

obstacles with a LiDAR sensor. The other cue is the slope
of the up-side (the back) of the ditch. There are always sev-
eral scan points that are lower than others in Z axis (for

instance, P2, P3 are lower than P1, P4). These two cues are
both employed as features in our algorithm.

When the LiDAR is upright mounted, the scan lines
will be distributed as shown in Figure 9(b). The scan points
(P1, P2, P3, P4) scattered on the obstacle locate in different
scan lines. The angles between every two adjacent scan lines
depend on the intrinsic parameter of the LiDAR. In compar-
ison, by setting the LiDAR under the proposed setup, the
scan points (P1, P2, P3, P4) are generated by the same scan
line, as shown in Figure 9(c). The benefit of this new setup
is that these scan points are much denser, and the angle
between every two points is fixed.

From the intrinsic parameter of the HDL-32E LiDAR
(Velodyne LiDAR, 2012), we know that the 32 scan lines
cover a 41.3◦ vertical field of view, which means the av-
erage angle of θi between every two adjacent scan lines is
about 1.29◦. Besides, 2,000 scan points covers a total 360◦

horizontal field of view, which means the angle θi between
every two adjacent scan points of a same scan line is 0.18◦.
Suppose the LiDAR is equipped at a height of H = 2 m,
and a negative obstacle is to be located away from the ve-
hicle at a distance of D = 10 m, then according to Eq.(2),
dP1P ′

2
= 1.32 m when the LiDAR is traditionally upright

fixed, while dP1P ′
2

= 0.17 m when the LiDAR is fixed under
the proposed setup. Because the distance between points on
the ground is 1.32m under the upright setup, a pit with or
smaller than this size could not be detected. The proposed
setup reduces this distance to 0.17 m; therefore, the same pit
can be detected under the proposed setup.

dP1P ′
2

= tan

(
atan

(
D

H

)
+ θi

)
× H (1)
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Figure 8. The comparison experiments for positive obstacle detection of two setups: (a) shows the result generated by the proposed
setup; (b) shows the result generated by the traditional setup.

Table I. The point distribution on positive obstacles under the
proposed setup and the traditional setup.

O1 O2

Traditional upright setup 243 597
The proposed setup 322 740

4.2. The Mathematical Model of the Point
Distribution of a Single Scan Line

When the LiDAR is mounted under the proposed setup and
calibrated onto the vehicle coordinate frame (the calibration
approach can be found in our previous work (Shang et al.,
2014)), the scan point distribution is shown as follows:

1) The angle between every two adjacent points is a fixed
angle θi (Figure 10), which can be figured out by equation
(2).

In Figure 10, θ ′
i depends on the number M when the

scan line works in a circle. Thus, θ ′
i = 360◦

M
, where M is a

fixed parameter. βi is also a fixed intrinsic parameter of
the LiDAR.

sin(θi/2) = sin(θ ′
i /2) ∗ cos(βi) (2)

2) The relationship between D and t can be expressed as
in Eq. (3), where t denotes the numbers of scan points
from the vehicle to the obstacle, D denotes the horizontal
distance from the vehicle to the obstacle, and H denotes
the height of the mounted LiDAR.

t = atan(D/H )/θi (3)

Journal of Field Robotics DOI 10.1002/rob
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Figure 9. Analysis of the geometrical character of the negative
obstacle detection under the traditional upright setup and the
proposed setup: (a) shows the geometrical character of a typical
negative obstacle; (b) shows the scan points generated by the
upright fixed LiDAR; (c) shows the scan points generated by
the proposed setup LiDAR.

Figure 10. The scan angle between adjacent points in a same
scan line.

3) The distance between every two adjacent scan points can
be expressed as W = P (t + 1) − P (t), where P (t) = D,
and P (t + 1) can be estimated by equation (4).

P (t + 1) = tan(atan(D/H ) + θi) ∗ H (4)

4) The number of scan points on the negative obstacle Num

can be expressed as in Eq. (5):

⎧⎪⎨
⎪⎩

t1 = atan(D/H )/θi

t2 = atan((D + L)/H )/θi

Num = t2 − t1;

(5)

5) The mathematical model of a negative obstacle in a single
scan line can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = atan(D/H )/θi ;

Num = atan((D + L)/H )/θi − atan(D/H )/θi ;

x(t) = D;

x(t + 1 : t + Num) = D + L;

y(t) = 0;

y(t + i) ≈ −H ∗ L ∗ (Num − i)/D/Num; i ∈ [1, Num]

(6)

Where x denotes the distance between the vehicle and
the obstacle, and y denotes the height of each scan point.

According to the mathematical model of the negative
obstacle (Eq. (6)), a scan line can be generated when the pa-
rameter of the negative obstacle is set. Scan lines both gen-
erated by the mathematical model and by the real LiDAR
are shown in Figure 11. Figure 11(a) is an image scene where
an obstacle is located before the vehicle. Figure 11(b) shows
the scan line generated by the mathematical model. Figure
11(c) shows the features of width and height of the obstacle
in a single scan line. Figure 11(d) shows the real scan line
generated by an onboard LiDAR. Figure 11(e) shows the
width feature and height feature of the real obstacle. It can
be found that the scan line generated by the mathematical
model resembles the real scan line.

5. ADAPTIVE MATCHING FILTER BASED ALGORITHM
(AMFA) FOR NEGATIVE OBSTACLE DETECTION

From Figure 11, we can see that the width and the height
are distinguished when an obstacle emerges in the scan line.
Thus, the obstacle can be detected by analyzing the two fea-
tures in each scan line. Each scan line can also be considered
as a signal wave. Therefore, the issue of obstacle detection
can be transformed into a signal detection problem in each
wave. The mathematical model of the obstacle can be de-
scribed as F (H,D, L, i), where H denotes the height of the
mounted LiDAR, D denotes the distance between the ob-
stacle and the vehicle, L denotes the width of the obstacle,
and i denotes that this mathematical model is generated by
the ith scan line.

The idea of AMFA algorithm is that at first simulated
obstacles with different sizes at different positions are gener-
ated by the mathematical model; then, features of these sim-
ulated obstacles are employed as adaptive filters to match
with the real scan lines. The potential obstacle will be identi-
fied if the features of simulated obstacles match with the real
scan lines, and a peak will emerge at the relevant position
in the scan line.
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Figure 11. The scan line and its features generated by the mathematical model and generated by the real scan line.
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This approach can be summarized as in Algorithm 1.

Algorithm 1. Adaptive matching filter based algorithm for negative obstacle detection.

Require:
the mathematical model F (H,D,L, i) of a scan line;

1: Traverse the distance parameter D, where D ∈ [RangeD1, RangeD2]. RangeD1 and RangeD2 denote the distance ranges for
obstacle detection in this algorithm;

2: Traverse the width parameter L, where L ∈ [RangeL1, RangeL2]. RangeL1 and RangeL2 denote the width ranges for this
algorithm;

3: By changing D and L, a series of ideal obstacle signals are generated by the mathematical model F (H,D,L, i), which are
labeled as FDL;

4: Translate the real scan line Wi into the feature wave Pi , such as the width feature or the height feature;
5: Translate the ideal obstacle signal FDL into the corresponding feature wave PDL;
6: Matching all PDL with the real wave Pi , and accumulating the results in the D-L 2-D parameter space;
7: Finding the peak in the parameter space. If there is a potential obstacle, the relevant position will produce a peak in the

parameter space, according to the parameter DR and LR ; the parameter of the potential obstacle (DR , LR).
8: return the parameter of the potential obstacle (DR,LR).

Some typical ideal obstacle feature waves PDL, gener-
ated by Step 5 in Algorithm 1 are listed in Figure 12. As in
Algorithm 1, both the width parameter L and the distance
parameter D are traversed with a fixed step within its range.
Thus, a series of ideal obstacle signals can be generated as
described in Step 3. Then, these ideal obstacle signals are
transformed into different feature waves PDL, as shown in
Figure 12. All the waves PDL are employed to match with
the real wave (such as Figure 11(e)). Thus, a peak would
emerge at the position of a potential obstacle in the D-L 2-D
parameter space.

In our application, the distance parameter D ∈
[2 m, 25 m], and the width parameter L ∈ [0.5 m, 5 m], which
means our algorithm can only detect negative obstacles in
front of the vehicle 2 m to 25 m away, with a width from 0.5 m

and 5 m. To reduce the filter numbers, the step sizes of D and
L are both set 0.5 m. Thus, the size of 2-D parameter space
[DR ,LR] is 46 × 9, and a simple threshold is set to find the
maximal position. During experiments, it is found that the
step size of D is more sensitive to the detection results than
the step size of L, for the width feature only captures one
pixel that may not be matched at a relevant position. Thus,
the sparse step of D would seriously affect the detection
capability. A solution in our experiments is that the width
feature waves are filtered by Gaussian filter beforehand.

To validate the proposed AMFA algorithm, a series of
outdoor experiments are carried out on some ALV plat-
forms. LiDARs are equipped at different heights (H = 1.4 m

and H = 2 m). Various negative obstacles are placed in
the unstructured environment to verify the capability of
the proposed algorithm. Some typical experimental results
are shown in Figure 13: Figure 13(a) shows the scene where
the obstacles are placed; Figure 13(b) lists the results of both
LiDARs, in which the green line denotes the position of the
detected obstacle. Experimental results on different kinds

of negative obstacles at different distances show that the
proposed AMFA algorithm is effective.

The third row of Figure 13 demonstrates the case in
which a LiDAR works in an error mode: some scan lines
are absent. In this case, the proposed AMFA algorithm can’t
operate normally (the left LiDAR in the third row), because
the proposed algorithm is based on every single scan line.

6. FEATURE FUSION BASED ALGORITHM (FFA) FOR
NEGATIVE OBSTACLE DETECTION

Although the proposed AMFA algorithm is effective most
of the time, there are still some drawbacks:

1) AMFA algorithm detects an obstacle in each scan line,
which would give false alarms in complex environments.

2) AMFA algorithm would be seriously affected due to Li-
DAR sensor failures.

3) The detection results in each scan line are independent
but only fused at the final step. The fusion efficiency is
low.

On the basis of the AMFA algorithm, another obstacle
detection algorithm is introduced. This revised algorithm
fuses all features, generated by AMFA algorithm from two
LiDARs into a global map according to GPS information.
Thus, a history of detected features are accumulated in this
global map. During the accumulating process, each detected
feature would be assigned different weight to show its con-
fidence, which is estimated by Bayesian rule. To detect the
obstacle, the global map is translated into a current map.
Potential negative obstacles are detected from this current
map finally.

The framework of FFA algorithm can be summarized
in Figure 14. As shown in Figure 14, all features, which
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Figure 12. Some typical ideal obstacle feature waves PDL.

are detected by the AMFA algorithm from different Li-
DARs or captured at different frames, are accumulated into
a global map. This global map also includes all history
features. During the accumulation process, the Bayesian
rule is employed to estimate the weight of each feature.

GPS information is employed to estimate the relationship
between the current map and the global map. Then, the
global map is changed into the current map again, which
is in the vehicle coordinate frame. Last, the filter is im-
plemented and peaks are detected from this current map,
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Figure 13. Experimental results by the proposed AMFA algorithm.

which denotes the corresponding position of the detected
obstacles.

To describe the detail of FFA algorithm more clearly,
Figure 15 illustrates the whole process of implementing
the proposed algorithm. Figure 15(a) is the image scene
where there exists two negative obstacles. Figure 15(b) and
Figure 15(c) are the scan points generated by two LiDARs,

in which the potential obstacles detected by the AMFA al-
gorithm are labeled by green lines. Both real and false ob-
stacles are detected by the AMFA algorithm. These features
are translated into a global map according to GPS infor-
mation. The global map is shown as in Figure 15(d). Dur-
ing its accumulation process, different features from the
same frame time would assign different weights, which are
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Figure 14. The framework of the feature fusion based algorithm.

estimated by Bayesian rule. Figure 15(d) lists all of the de-
tected features in a fixed region. To detect obstacles more
conveniently, we change the global map into the current
map in the vehicle coordinate frame again, which is shown
as Figure 15(e). Figure 15(f) is the corresponding parame-
ter space that accumulates all the weights of these features.
Peaks are detected in Figure 15(f) and the final result is
shown in Figure 15(g).

The proposed FFA algorithm incorporates the follow-
ing two advantages: first, fusing the filter responses (fea-
tures detected by the AMFA algorithm) in a global map
before peak detection. These features are generated by
different LiDARs or captured at different frames. Thus,
these LiDARs are not required to be synchronous. Second,
the Bayesian rule is adopted to estimate each weight of these

features, which is very important for accumulating peaks in
the parameter space.

Bayesian rule can be described as follows:

P (A|Xi) = P (Xi |A)P (A)
P (Xi)

(7)

When there are multi-cues, Eq. (7) can be transformed into
Eq. (8),

P (A|Xi, Xi+1)

= P (Xi+1|A, Xi)P (Xi |A)P (A)
P (Xi+1|Xi)P (Xi)

= P (Xi+1|A, Xi)
P (Xi+1|Xi)

P (A|Xi)

(8)
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Figure 15. The process of the proposed FFA algorithm. (a) the scene contains two negative obstacles; (b) and (c) the scan points
generated by two LiDARs; (d) the global map, in which all feature generated by AMFA algorithm; (e) the current map under
the vehicle coordinate frame, which is translated from the global map according to GPS information; (f) the parameter space that
accumulates all features according to Bayesian rule. Peaks are detected in (f) and the final result is shown in (g).

According to the probability rule, Eq. (8) can be rewrit-
ten into Eq. (9),

P (A|Xi, Xi+1)

= P (Xi+1|A, Xi )
P (Xi+1|A, Xi )P (A|Xi ) + P (Xi+1| ∼ A, Xi )P (∼ A|Xi )

P (A|Xi )

(9)

The detection process can be many scan lines
used to detect potential targets independently. Thus,
P (Xi+1|A, Xi) = P (Xi+1|A). Thereby, equation (9) can be
transformed into Eq. (10),

P (A|Xi, Xi+1)

= P (Xi+1|A)
P (Xi+1|A)P (A|Xi) + P (Xi+1| ∼ A)P (∼ A|Xi)

P (A|Xi)

(10)

The key step of applying Bayesian rule is iterating the
probability in the global map. Parameters in Eq. (10) can
be explained as follows: Xi specifies the feature detected by
AMFA algorithm. A specifies the feature that there exists an

obstacle. P (A|Xi) specifies the probability to be an obstacle
stored in the global map. P (Xi+1|A) denotes the probabil-
ity to be an obstacle generated by the current detection.
P (Xi+1| ∼ A) is a likelihood probability, which denotes the
probability not to be an obstacle according to the scan line
model.

Bayesian rule in the proposed FFA algorithm is applied
as follows:

Step 1: In the traditional AMFA algorithm, each detected
feature was assigned “0,” which means no obstacle;
or assigned “1,” which means a potential obstacle
by a previous threshold. Now it outputs a proba-
bility Pi instead of “0” or “1,” where Pi ∈ [0, 1], ac-
cording to the matching level in AMFA algorithm.

Step 2: Generalization is carried out among adjacent po-
sitions before mapping the probability Pi into the
global map.

Step 3: Read the probability Pi stored in the global map,
and iterate it according to equation (10) to generate
new probability Pi+1.

Step 4: Write the value Pi+1 into the global map back.
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Suppose the probability from each detected feature
is P (Xi+1|A) = 0.7 to be an obstacle, the prior probability
P (Xi+1| ∼ A) = 0.1, the initial value of the whole global map
(the prior probability, which is not sensitive to the detection
process) is set P (A) = P (A|X0) = 0.01. According to Eq. (10),
the iterating process is illustrated as in Eq. (11):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (A|X1) = P (X1|A)
P (X1|A)P (A|X0) + P (X1| ∼ A)P (∼ A|X0)

P (A|X0) = 0.7
0.7 × 0.01 + 0.1 × (1 − 0.01)

× 0.01 = 0.066

P (A|X2) = P (X2|A)
P (X2|A)P (A|X1) + P (X2| ∼ A)P (∼ A|X1)

P (A|X1) = 0.7
0.7 × 0.066 + 0.1 × (1 − 0.066)

× 0.066 = 0.3311

P (A|X3) = P (X3|A)
P (X3|A)P (A|X2) + P (X3| ∼ A)P (∼ A|X2)

P (A|X2) = 0.7
0.7 × 0.3311 + 0.1 × (1 − 0.3311)

× 0.3311 = 0.776

P (A|X4) = P (X4|A)
P (X4|A)P (A|X3) + P (X4| ∼ A)P (∼ A|X3)

P (A|X3) = 0.7
0.7 × 0.776 + 0.1 × (1 − 0.776)

× 0.776 = 0.96

P (A|X5) = P (X5|A)
P (X5|A)P (A|X4) + P (X5| ∼ A)P (∼ A|X4)

P (A|X4) = 0.7
0.7 × 0.96 + 0.1 × (1 − 0.96)

× 0.96 = 0.994

(11)

According to Eq. (11), when five scan lines detect a
potential obstacle at the same position independently, the
probability of being a real obstacle reaches 99.4% according
to this algorithm. Therefore, the proposed FFA algorithm
can detect the obstacle by examining the probabilities in the
global map.

Figure 16 illustrates the process to apply Bayesian rule
in FFA algorithm in experiment. Figure 16(a) is a scene that
a negative obstacle is placed in front of the vehicle. Figure
16(b1-f1) are the results detected by AMFA algorithm. Fig-
ure 16(b2-f2) show the corresponding map where weights
are accumulated according to Bayesian rule. Figure 16(b1)
and (b2) are the results generated from the left LiDAR at a
single frame, whereas (c1) and (c2) are the results from the
right LiDAR at a single frame. Figure 16(d1) and (d2) are the
results generated from both two LiDARs at a single frame.
Figure 16(e1) and (e2) are the results from two LiDARs by
accumulating two series frames, and Figure 16(f1) and (f2)
are the results generated from two LiDARs by accumulat-
ing five series frames. It can be found that the probability
where there is a real obstacle has achieved almost 100% in
Figure 16(f2). Thus, it is very efficient to detect the obstacle
by setting a threshold for FFA algorithm.

7. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the proposed algorithms, experiments are car-
ried out both in structured environments and field environ-
ments. Our experiments are composed of four parts: first,
details of the testing environments and the kinds of nega-
tive obstacles are introduced in Part I. The detection accu-
racy and the maximum detection distance of the proposed
algorithm are analyzed in Part II. In Part III, the detection
performance in different kinds of scenes are described, and
some comparison with state-of-the-art algorithms are also
discussed. In Part IV, some false alarm cases are discussed.

7.1. Part I: Description of the Testing
Environments and Negative Obstacles

Two structured roads and six unstructured roads filled
with negative obstacles are adopted to validate the pro-
posed algorithms. Different types of negative obstacles are
listed in Figure 17(we prepared about 25 different negative

obstacles, labeled as O1 to O25, most of which are dug by
manual workers). The sizes of obstacles vary from 0.5 m to
3 m, and the depths are deeper than 0.5 m. The two struc-
tured roads are labeled as S1 and S2. Each of the two roads
is dug with a pit. Six unstructured roads are categorized
into five types: a grass lane, labeled as U1; two dirt roads,
labeled as U2 and U3; a highland road, in which the sur-
face is seriously bumpy, labeled as U4; a path in a forest,
labeled as U5; a race track in the “Overcome Danger 2014”
ground unmanned vehicle challenge of China, labeled as
U6. Details of obstacles distributions are listed in Table II.
Most of the testing roads are built not only for verifying
the proposed algorithm, but also for examining the whole
process of autonomous driving, such as navigation, positive
obstacle detection, path plan, and so forth.

The right-handed coordinate is defined as follows: X

goes to the right of the vehicle, Y measures what is in front,
and Z comes out of the ground plane. The size of the obstacle
is defined as X1 × Y1, where X1 means the length in X

axis, Y1 means the length in Y axis. Whether a ditch can be
crossed safely mainly depends on the diameter of the wheel
and the length of Y1. Thus, Y1 is chosen to describe the size
of a negative obstacle in this paper.

Most of the testing roads in the field environments are
bumpy. Figure 18 shows two typical rough roads, U4 and
U5, which are drawn according to GPS information. Obsta-
cles’ position are also marked in the trajectory. In Figure 18,
Z axis measures the bumpiness of the testing road. Most of
the testing obstacles are placed at the most bumpy sites.

7.2. Part II: Analysis of the Detection Accuracy
and the Maximal Detection Distance of the
Proposed Algorithm

The interface of the experimental result is first introduced
in this part, as shown in Figure 19. Figure 19(a) is the LiDAR
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Figure 16. The process of applying Bayesian rule in the proposed FFA algorithm: (a) the scene where the experiment is carried
out; (b1-f1) the features detected by the proposed AMFA algorithm; (b2-f2) corresponding map where weights are accumulated
according to Bayesian rule; (b1) and (b2) the results generated by the left LiDAR at a single frame; (c1) and (c2) the results generated
by the right LiDAR at a single frame; (d1) and (d2) the results generated by both LiDARs at a single frame; (e1) and (e2) the results
generated by both two LiDARs at two accumulating series frames; (f1) and (f2) are the results generated by both LiDARs at five
accumulating series frames.

view, in which points from the left LiDAR are labeled blue
and points from the right LiDAR are labeled red. The de-
tected negative obstacle is labeled by green points in figure
(a). Figure 19(b) is the grid map under the vehicle coordinate
frame, and each grid is 0.2 m × 0.2 m. The origin is placed at
the cross of the two blue lines. Two green columns are 2 m

apart from the origin. The distance between every row of the
green lines is 5 m in the grid map. The detected obstacle is
marked red in the map, as shown in Figure 19(b). This map
is the final result of the negative obstacle detection mod-
ule and will be sent to other modules of ALV in real time.
Figure 19(c) shows the control platform of the proposed al-
gorithm, and the frame number is shown on this platform.

Figure 19(d) shows the scene where the experiment is car-
ried out and the location of the negative obstacle. According
to the relationship between the image coordinate and the ve-
hicle coordinate, the detection result is labeled by red lines
in this scene image. A camera is used to present a visual-
ized view of the negative obstacle for observers. The camera
is not strictly synchronous with LiDARs. That is why the
detection result labeled in the image does not fit the real
position identically. Two LiDARs are also not strictly syn-
chronous, which is not required in our proposed algorithms.

The details of the whole detection process can be il-
lustrated in Figure 20 and in Figure 21. A negative obstacle
(O7) is adopted to illustrate this process. The experiment is
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Figure 17. Various negative obstacles in both structured and unstructured environments.

Figure 18. The track of two testing roads and the positions of the corresponding negative obstacles.

designed as follows: a vehicle drives toward the obstacle.
A sequence of frames of detection results are listed in
Figure 21, which describes the process of the vehicle ap-
proaching the target. We can see the target is detected more
and more precise when the vehicle is approaching the target.

In the process of detection, the detection result will
approximate the real obstacle when the vehicle approaches
nearer, as illustrated in Figure 20. When the vehicle drives
toward the obstacle, the detection result in the grid map

(Figure 19(b)) is recorded. Thus, the size of the detected
obstacle is known every time during the whole process
illustrated as in Figure 20. X axis in Figure 20 describes
the distance from the vehicle to the target, and Y axis
denotes the detection accuracy of the proposed algorithm.
The accuracy is defined as follows: acc = Adetected

Astandard
× 100%,

where Adetected is the area taken by the detected target by
the algorithm, and Astandard is the real size of the target
obstacle. In Figure 20, the obstacle was first detected (a part
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Table II. Detailed descriptions of the testing roads and negative obstacles.

Label Road type Number Size: X1 × Y1 (m) Length of road (km)

S1 Structured road 1 O1: 1.5 × 1 3
S2 Structured road 1 O2: 1 × 0.7 1
U1 Grass road 1 O3:1 × 1 0.1
U2 Dirt road 5 O4,O5: 0.5 × 0.5, O6,O7: 1 × 0.7 5

O8: 3 × 0.7 (not human dug)
U3 Dirt road 3 O9: 2 × 2, O10: 3 × 1 3

O11: 2 × 2
U4 Highland road 5 O12: 2 × 1.5, O13: 1.5 × 1.5 5

O14,15: 2 × 2,O16: 3 × 1.5
U5 Forest road 7 O17: 1.5 × 1, O18: 1.5 × 1.5 5

O19: 1.5 × 2,O20: R=2.5
O21, O22: 2 × 1.5, O23: 2 × 1.5 puddle

U6 Race track 2 O24: 3 × 1,O25: R=2.5 3

Figure 19. The interface window of the experimental result: (a) shows the LiDAR data; (b) grid map in the vehicle coordinate
frame; (c) the control platform; (d) the corresponding scene image.

Figure 20. Analyzing the detection accuracy when the vehicle is approaching a negative obstacle.
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Figure 21. The detection process: a sequence frames of detection results when the vehicle approaches a negative obstacle.

of the obstacle) when the obstacle was located at a distance
of 16.5 m away from the vehicle, which means this target
emerged in the grid map. When the vehicle approaches
nearer, the detected area became bigger and bigger. When
the distance is less than 12 m away, the detected area will
become larger than the standard one (acc > 100%). There
are several reasons for this outcome: (1) The GPS signal
drifts even between adjacent frames, which is used to
translate the position of the detected obstacle onto the
global map. (2) There is a calibration error between the
LiDAR coordinate and the vehicle coordinate.

In real applications, it is allowed to detect the potential
obstacle a little larger than the real one, but it is forbidden
to detect the potential obstacle smaller than the real one.
If the detected obstacle is smaller than the real obstacle,
the vehicle would encounter danger when crossing the
obstacle. This aspect has been taken into consideration in
the proposed algorithm.

The maximal detection range is used to evaluate the
performance of the proposed algorithm, which is defined as
follows: When the size of the detected target is bigger than
a fixed threshold, the corresponding distance between the
vehicle and the target is the maximal detection distance. A
filter is operated before mapping the detection result onto
the final grid map in real application, thus, the detection
results of too small areas would be considered as noise and
be filtered. Once an obstacle is emerged in the grid map,
the corresponding distance between the vehicle and the
obstacle is defined as the maximal detection distance in our
experiments.

7.3. Part III: Adaptability Analysis and the
Comparison

Various negative obstacles are employed in different exper-
iments to verify the adaptability of the proposed algorithm
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Figure 22. Typical experiment results of the proposed algorithm in different scenes (I).

in this part. Two vehicle platforms with LiDARs set at dif-
ferent heights (H = 1.4 m and H = 2 m) are employed in
the experiments. For each vehicle, two compact HDL-32 Li-
DARs are equipped on the two sides of the vehicle top, as
shown in Figure 1. Some typical experimental results are
listed in Figure 22, Figure 23, and Figure 24. In those ex-
perimental results, the detected obstacles are marked in the
LiDAR data, the grid map, and the images. The distance
between the vehicle and the obstacle at the current moment

is also marked beside the obstacle (they are not the maximal
detection distance). Experimental results illustrate the high
performance of the proposed algorithm. More details of ex-
perimental results for different negative obstacle detections
are available at http://pan.baidu.com/s/1hqtKcnU, or at
http://yunpan.cn/cy5FLHpVgNPzI1.

1the acquired code is 9e0a
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Figure 23. Typical experiment results of the proposed algorithm in different scenes (II).

Both AMFA algorithm and FFA algorithm are ver-
ified by detecting different kinds of negative obstacles.
The maximal detection distance is employed to evaluate
the capability of the proposed algorithms. The position
of the potential obstacle is hand-selected. Therefore,
the false alarms generated by the roadside or other
positive obstacles would not disturb the maximal

detection distance. When the vehicle approaches the target
in different directions, or at different speeds, or with a
jarring vehicle, the maximal detection distance will vary.
Thus, an average of 10 results is employed to measure the
final maximal detection distance for a negative obstacle.

In addition, the maximal detection distance for
different obstacles with a same size placed on different

Journal of Field Robotics DOI 10.1002/rob



Shang et al: LiDAR Based Negative Obstacle Detection for Field Autonomous Land Vehicles • 613

Figure 24. Typical experiment results of the proposed algorithm in different scenes (III).

roads is also different. For example, the maximal detection
distance is larger when the obstacle is placed in a structured
environment than when it is placed in an unstructured
environment. Thus, for a same-sized obstacle, the average
of the maximal detection distances is used to measure
the capability of the proposed algorithm. The maximal
detection distances for all obstacles are listed in Table III.
In Table III, all of the maximal detection distances are the
average values by repetitious experiments.

Unfortunately, to the authors’ best knowledge, there
is no public database especially for negative obstacles,
because the shape of a negative obstacle is different, and the

definition of a negative obstacle is hard to fix. In addition,
the environment where the obstacle is placed also would
affect the detection distance of an approach. Thus, a straight-
forward comparison between the proposed algorithm with
other state-of-the-art approaches seems infeasible.

Tingbo Hu is the co-author of this paper, thus their
previous works (Tingbo, 2012; Wu & He, 2011) are suitable
for comparison. In their previous work, two cameras
were used to generate a 3-D scene, and both the color
information and the geometrical character were applied
as cues to enlarge the detection distance. Some typical
negative obstacles mentioned in Figure 17 had also been
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Table III. The maximal detection distance for some typical
negative obstacles by the proposed algorithm.

Maximal
Height of Width of detection

Unit (m) LiDAR obstaclea distance

AMFA H=1.4 L=0.5 D=9
AMFA H=2 L=0.5 D=9
FFA H=1.4 L=0.5 D=9
FFA H=2 L=0.5 D=9.5
AMFA H=1.4 L=0.7 D=10
AMFA H=2 L=0.7 D=10.5
FFA H=1.4 L=0.7 D=11
FFA H=2 L=0.7 D=12
AMFA H=1.4 L=1 D=12
AMFA H=2 L=1 D=13.5
FFA H=1.4 L=1 D=14
FFA H=2 L=1 D=15
AMFA H=1.4 L=1.5 D=13
AMFA H=2 L=1.5 D=14
FFA H=1.4 L=1.5 D=15
FFA H=2 L=1.5 D=16
AMFA H=1.4 L=2 D=15
AMFA H=2 L=2 D=16
FFA H=1.4 L=2 D=19
FFA H=2 L=2 D=21
paper (Tingbo, 2012) H=2 L=1 D=12

aL is the length in Y axis of the vehicle coordinates, which is used
to describe the size of a negative obstacle.

detected by their approach. The maximal detect distance
was also listed in Table III. Results show that if the sensor
is equipped at a same height (H = 2 m), and to detect the
same obstacle (L = 1 m), the maximal detection distance
of the proposed FFA algorithm can be improved by 20%,
compared to the approach in (Tingbo, 2012). With the
same distance (D = 12 m), the proposed FFA algorithm can
detect much smaller ditches (L = 0.7 m).

Larson et al.(Larson & Trivedi, 2011; Larson et al.,
2011) used a HDL-64 LiDAR for negative obstacle detection
as mentioned in the related work. In their paper, (Page
5) “multiple simulated scenes were created, filled with
negative obstacles,” but the size information of negative
obstacles are not described. In their work, the results were
given as follows: the detection rate was 31% when the
target was 50 m away, and the detection rate was 89% when
the target was 16 m − 20 m away. In addition, Larson also
pointed out that the real detection range of their system
was between 4.76 m and 5.91 m for detecting a slope.

Another performance criterion of a detection algorithm
is the computing time. The proposed FFA algorithm is
based on the proposed AMFA algorithm, in which all
computing operations are based on adjacent points. With
an Inter core i7-2620M CPU and 4GB RAM computer, the
computing time of the proposed FFA is less than 10 ms.

The computing time in paper (Tingbo, 2012) with the
same computer is more than 100 ms. Thus, compared to
the algorithm in (Tingbo, 2012), the computing time is
reduced by an order of two magnitudes. The computing
time is also mentioned in paper (Larson & Trivedi, 2011),
in which the approach was at an average rate of 2 Hz. A
LiDAR was also used in paper (Heckman et al., 2007), in
which the computing operation was carried out on a 3-D
data accumulation map, running at a slow frame rate of 1
Hz. Paper (Sinha & Papadakis, 2013) also pointed out the
computing time of their approach, though the detection
range was not public: in a 64-bit system, Intel-I7 CPU and
7.8 GB memory, the average computing time costs 15 ms.
The computing time are listed in Table IV. To the best of the
authors’ knowledge, the proposed algorithm is the fastest
among the existing negative obstacle detection algorithms.

7.4. Part IV: False Alarm Analysis

Another performance criterion of the negative obstacle de-
tection algorithm is the false alarm rate. As difficult as it is to
define a negative obstacle, it is also difficult to define a false
alarm, and how to weigh it. On the one hand, the environ-
ment is an open aggregation, and every new scene or new
road might bring a potential false alarm to the algorithm.
On the other hand, it is even harder to determine whether it
is a false alarm, because the negative obstacle itself is hard to
define. For example, the sides of the road are usually lower
than the road surface in an unstructured environment. In
this case, it is hard to distinguish the false alarms from the
real negative obstacles. Figure 25 shows a typical scene in
which both real negative obstacles and pseudo-negative ob-
stacles are detected by the proposed algorithm. In Figure 25,
four targets have been detected, labeled as T 1, T 2, T 3, T 4.
Among these four targets, T 1 and T 2 are real pits on the
road surface; T 3 and T 4 are the roadsides, which are lower
than the road surface. However, T 3 and T 4 would also bring
serious risks to the vehicle if it drives on them. Therefore, it
is hard to define that T 3 and T 4 are false alarms or real neg-
ative obstacles. Similar “false alarm” occurs when there are
two positive obstacles toward the LiDAR. The area between
two positive obstacles are lower than the positive obstacles,
thus the algorithm would consider it as a ditch. A rough
road can cause an occasional false alarm. More experimen-
tal results about false alarms generated by the proposed al-
gorithm are offered at http://pan.baidu.com/s/1hqtKcnU,
or at http://yunpan.cn/cy5FLHpVgNPzI2, on which some
videos of experimental results are provided. In these videos,
the negative obstacle detection is recorded, as well as the
generated false alarms. Up to now, the proposed FFA al-
gorithm has been successfully applied on more than four
different field ALVs. These field ALVs have driven thou-
sands of miles in both structured environments and field

2the acquired code is 9e0a
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Table IV. Comparison of computing time with state-of-the-art algorithms.

Compute target Platform Computing time (ms)

This paper adjacent points by LiDAR Inter core i7-2620M CPU, 4GB
RAM

less than 10

Paper (Sinha & Papadakis, 2013) 3-D image data generated by
LiDAR

64 bit system, Intel-I7 CPU, 7.8 GB
RAM

15

Paper (Tingbo, 2012) 3-D image data by stereo camera Inter core i7-2620M CPU, 4GB
RAM

more than 100

Paper (Larson & Trivedi, 2011) 3-D LiDAR data not mentioned 500
Paper (Heckman et al., 2007) 3-D LiDAR data 3 GHz CPU, 2 GB RAM 800

Figure 25. It is hard to distinguish false alarm from real potential negative obstacle.

environments under autonomous mode in last year. False
alarms generated by the proposed algorithm didn’t bring
trouble to our ALVs when driving under the autonomous
mode.

8. CONCLUSION

This paper introduces a LiDAR based negative obstacle de-
tection algorithm by designing a novel setup of 3-D LiDAR
for field ALVs. Different from the traditional upright setup,
this proposed setup arranges two 3-D LiDARs on the two
sides of the vehicle top to reduce the blind region around
the vehicle and to improve the density of the scan lines. On
the basis of this new setup, a mathematical model of the
point distribution for the single scan line is deduced. Ideal
scan lines are generated by the mathematical model to sim-
ulate the real one. With the mathematical model, an AMFA
and an FFA are proposed. Lots of experiments are carried
out, and experimental results reveal the effectiveness and
high performance. Compared with the state-of-the-art tech-
niques, the detection range is expanded by 20% and the
computing time is reduced by an order of two magnitudes.
The proposed FFA algorithm has been successfully applied

in two ALVs, which won the champion and the runner-up
in the “Overcome Danger 2014” ground unmanned vehi-
cle challenge of China, with a score of negative obstacle
detection task of 14.4%.

In addition, it is a valuable choice to employ two HDL-
32 LiDARs instead of a HDL-64 LiDAR for field ALVs. First,
it costs almost the same for two HDL-32 LiDAR compared
with a HDL-64 LiDAR. Second, the visual range gener-
ated by two HDL-32 LiDARs is more suitable for a field
ALV, compared with a upright HDL-64 LiDAR. Third, the
density in the ROI is much denser under the new setup,
which is very useful for both positive obstacle detection
and negative obstacle detection. Fourth, it is better to de-
tect negative obstacles as discussed in this paper. The idea
to deal with obstacle detection by adjacent points also can
be applied to detect positive obstacles. The biggest advan-
tage of this idea is real-time implementation, because all
distributed processing on board the vehicle had to be real-
time capable. Fusing features from different sensors or at
different frames and iterating the probability by Bayesian
rule are also the contributions of this paper. All in all, we
hope our work would help to improve the ability of field
ALVs.

Journal of Field Robotics DOI 10.1002/rob
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