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• A complete framework for ground surface estimation and static/moving obstacle detection in driving environments is proposed.
• A piecewise surface fitting algorithm, based on a ‘multi-region’ strategy and Velodyne LIDAR scans behavior is proposed to estimate a finite set of

multiple surfaces that fit the road and its vicinity.
• A 3D voxel-based representation, using discriminative analysis is proposed for obstacle modeling. The proposed approach detects moving obstacles by

integrating and processing information from previous measurements.
• A set of diversified experiments, and corresponding result analysis, aimed at evaluating the performance of the proposed approach were performed.
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a b s t r a c t

Artificial perception, in the context of autonomous driving, is the process by which an intelligent
system translates sensory data into an effective model of the environment surrounding a vehicle. In this
paper, and considering data from a 3D-LIDAR mounted onboard an intelligent vehicle, a 3D perception
system based on voxels and planes is proposed for ground modeling and obstacle detection in urban
environments. The system, which incorporates time-dependent data, is composed of two main modules:
(i) an effective ground surface estimation using a piecewise plane fitting algorithm and RANSAC-method,
and (ii) a voxel-grid model for static and moving obstacles detection using discriminative analysis and
ego-motion information. This perception system has direct application in safety systems for intelligent
vehicles, particularly in collision avoidance and vulnerable road users detection, namely pedestrians
and cyclists. Experiments, using point-cloud data from a Velodyne LIDAR and localization data from
an Inertial Navigation System were conducted for both a quantitative and a qualitative assessment of
the static/moving obstacle detection module and for the surface estimation approach. Reported results,
from experiments using the KITTI database, demonstrate the applicability and efficiency of the proposed
approach in urban scenarios.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In the last couple of decades, autonomous driving and
advanced driver assistance systems (ADAS) have had remarkable
progress. Significant scientific advancements in these research
topics have benefited from continuous progress on areas such
as computer vision, machine learning, control theory, real-time
systems and electronics. An intelligent vehicle can be described
by the relationship between three commonly accepted modules:
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perception, planning and control [1]. The perception module,
which is of interest here, perceives the environment and builds an
internal model of the environment using sensor data. In case of 3D,
and for intelligent/autonomous vehicles applications, a perception
system perceives and interprets the surrounding environment
using, commonly, data from stereo cameras [2,3] and/or from
3D-LIDARs [4,5]. Although affordable and having no moving
parts, a major limitation of a stereo system is the difficulty in
dealing with changes in illumination and weather conditions e.g.,
snow covered environments, intense lighting conditions and night
driving scenarios. Also, stereo cameras are sensitive to calibration
errors. On the other hand, LIDAR sensors, such as Velodyne devices,
are less sensitive to weather conditions and can work under poor
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illumination conditions. The main disadvantages of these sensors
are their high cost, although this tends to decrease, and they are
constituted by moving elements of high precision.

In this work, we consider the 3D measurements coming in the
form of a point-cloud from a Velodyne LIDAR mounted on the roof
of a vehicle. Given an input point-cloud, it needs to be processed
by a perception system in order to obtain a consistent and mean-
ingful representation of the environment surrounding the vehicle.
Three main types of data ‘representations’ are commonly used:
(1) Point cloud; (2) Feature-based; and (3) Grid-based. Point cloud-
based approaches directly use raw sensor data for environment
representation [6]. This approach generates an accurate represen-
tation, however, it requires large memory and high computational
power. Feature-basedmethods use locally distinguishable features
(e.g. lines [7], surfaces [8], superquadrics [9]) to represent the
sensor information. Grid-based methods discretize the space into
small grid elements, called cells, where each cell contains informa-
tion regarding the sensory space it covers. Grid-based solutions are
memory-efficient, simple to implement, and have no dependency
to predefined features,making them an efficient technique for sen-
sor data representation in intelligent vehicles and robotics.

1.1. Grid-based representation

Several approaches have been proposed to model sensory data
space using grids. Moravec and Elfes [10] presented early works
on 2D grid mapping. Hebert et al. [11] proposed a 2.5D grid model
(called elevation maps) that stores in each cell the estimated
height of objects above the ground level. Pfaff and Burgard [12]
proposed an extended elevation map to deal with vertical and
overhanging objects. Triebel et al. [13] proposed a ‘‘multi-level
surface map’’ that allows multiple levels for each 2D cell. These
methods, however, do not represent the environment in a fully
volumetric (3D) way. Roth-Tabak and Jain [14] and Moravec [15]
proposed a 3D occupancy grid composed of equally-sized cubic
volumes (called voxels). However, it requires large amounts of
memory since voxels are defined for the whole space, even if there
are only a few measured points in the environment. LIDAR-based
3D occupancy grids are able to represent free and unknown areas
by accepting a higher computation cost of ray casting algorithms
for updating the grid cells. 3D grid maps can be build faster
by considering only the end-points of the beams. However, by
discarding ray casting algorithms, information about free and
unknown spaces is lost. However, this simplified model drastically
speeds up the process [16]. A related approach is proposed by Ryde
and Hu [17], in which they store a list of occupied voxels over
each cell of a 2D grid map. Douillard et al. [18] used a combination
of a coarse elevation map for background representation and a
fine resolution voxel map for object representation. To reduce
memory usage of fully 3Dmaps,Meagher [19] proposed octrees for
3D mapping. An octree is a hierarchical data structure for spatial
subdivision in 3D. OctoMap [20] is a mature version of octree
based 3D mapping. However, the tree structure of octrees causes
a more complex data access in comparison with a traditional 3D
grid. In another attempt, Dryanovski et al. [21] proposed themulti-
volume occupancy grid, where observations are grouped together
into continuous vertical volumes (height volumes) for each map
cell, each volume having a starting position from the ground and a
height.

1.2. Grid-based obstacle detection

Obstacle detection (OD) which is usually built on top of
grid-based representation, is one of the main components of
perception in intelligent/autonomous vehicles. It has been in the
focus of active research in last years [22]. Recently, most of the
OD techniques have been revisited to adapt themselves to 3D
sensor technologies [23]. OD algorithms need some assumptions
about the ground surface to discriminate between the ground
and obstacles [24]. The perception of a 3D dynamic environment
by a moving vehicle requires a 3D sensor and an ego-motion
estimation mechanism. A perception system with the ability to
estimate road surface and obstacle detection in dynamic 3D urban
scenario has a direct application in safety systems such as: collision
warning, adaptive cruise control, vulnerable road users detection
and collision mitigation braking. A higher level perception system
would also involve detection and tracking of moving objects
(DATMO) [25], object recognition and behavior analysis [26];
neither of these perception modules are considered in this paper.

1.2.1. Ground surface estimation
Incoming data from a 3D sensor need firstly to be processed

for ground surface estimation and subsequently for obstacle
detection. Ground surface and obstacle detection have a strong
degree of dependency because the obstacles (e.g., walls, poles,
motorcycles, vehicles, pedestrians, and cyclists) are all located on
the surface that represents the roadway and the roadside. Many
of the methods assume that the ground is flat and everything
that stands up from the ground is considered as obstacle [29–31].
However, this simple assumption is overridden inmost of practical
scenarios. In [8] the ground surface is detected by fitting a plane
using RANSAC on the point-cloud from the current time instance.
This method only works well when the ground is planar. Non-
planar grounds, such as undulated roads, curved uphill/downhill
ground surface, sloped terrains or situations with big rolling/pitch
angle of the host vehicle remain unsolved. The ‘V-disparity’
approach [32] is widely used to detect the road surface from the
disparitymapof stereo cameras. However, disparity is not a natural
way to represent 3D Euclidean data and it can be sensitive to roll
angle changes. A comparison between ‘V-disparity’ and Euclidean
space approaches are given in [33]. In [34] a combination of
RANSAC [35], region growing and least square fitting is used for the
computation of the quadratic road surface. Though it is effective,
yet it is limited to the specific cases of planar or quadratic surfaces.
Petrovskaya [36] proposed an approach that determines ground
readings by comparing angles between consecutive readings from
Velodyne LIDAR scans. Assuming A, B, and C are three consecutive
readings, the slope between AB and BC should be near zero
if all three points lie on the ground. A similar method was
independently developed in [37]. In the grid-based framework
presented in [28], grid-cells belonging to the ground are detected
by means of the average and variance of the height of points
falling into each cell. In [38], all objects of interest are assumed to
reside on a common ground plane. The bounding boxes of objects,
from the object detectionmodule, are combinedwith stereo depth
measurements for the estimation of the ground plane model.

1.2.2. On-ground obstacle detection
This section briefly reviews OD in a grid-map basis. Vatavu

et al. [27] built a rectangular Digital Elevation Map (DEM) with ex-
plicit connectivity between adjacent 3D locations using the 3Ddata
inferred from dense stereo. The ground plane projection of this
intermediate obstacle representation is used to extract free-form
object delimiters. A particle filter-based mechanism is adopted
for tracking free-form object delimiters extracted from the grid.
In [28], Asvadi et al. used 2.5D elevation grids to represent the
environment, having as input data the point-clouds from a Velo-
dyne LIDAR and the measurements from a GPS/IMU localization
system, where a local 2.5D static map is built by the combina-
tion of 2.5D grids and localization data. Based on a robust spa-
tial reasoning, and comparing the current grid with the updated
static map, a 2.5D motion grid is obtained; such motion grids
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Table 1
Some recent related work on 3D perception systems for intelligent vehicles applications.

Reference 3D sensor Ego motion
estimation

Ground surface
estimation

Representation for
obstacle detection

Motion detection/
clustering/segmentation

Data
association/tracking

Vatavu et al.,
2015 [27]

Stereo camera GNSS or GPS/IMU
odometry

RANSAC, region
growing and least
square fitting

2.5D digital elevation
map (DEM)

Object delimiters
extracted from the
projection of elevation
grids

RaoBlackwellized
particle filter

Asvadi et al.,
2015 [28]

Velodyne LIDAR GPS/IMU
odometry

Cells contain
points with low
average and
variance in height

2.5D elevation grid A static local 2.5D map
is built and the last
generated 2.5D grid is
compared with the
updated local map

Gating, nearest
neighbor association
and Kalman filter

Pfeiffer and
Franke, 2010 [29]

Stereo camera Visual odometry Planar ground
assumption

Stixel (2.5D vertical
bars in depth image)

Segmentation of stixels
based on motion,
spatial and shape
constraints using
graph cut algorithm

6D-vision Kalman
filter

Broggi et al.,
2013 [30]

Stereo camera Visual odometry Planar ground
assumption

3D voxel grid Distinguish
stationary/moving
objects using
ego-motion estimation
and color-space
segmentation of voxels

A greedy approach
based on a distance
function and Kalman
filter

Azim and Aycard,
2014 [31]

Velodyne LIDAR GPS/IMU
odometry and
scan matching

Planar ground
assumption

Octomap Inconsistencies on map
and density based
spatial clustering

Global Nearest
Neighborhood (GNN)
and Kalman filter
are then grouped to provide an object-level representation of
the scene. Finally, a data association strategy in conjunction with
Kalman Filter (KF) is used for tracking grouped motion grids. Pfeif-
fer and Franke [29] used a stereo vision system for acquiring 3D
data and visual odometry for ego-motion estimation. They ap-
plied the Stixel representation [39], sets of thin and vertically ori-
ented rectangles, for the dynamic environment representation.
Stixels are segmented based on the motion, spatial and shape con-
straints, and are ‘‘tracked’’ by a so-called 6D-vision KF [40] which
is a framework for the simultaneous estimation of 3D-position
and 3D-motion. Another solution using stereo vision, as a source
of 3D data, is addressed by Broggi et al. [30]. Ego-motion is es-
timated by means of visual odometry and then proceed to dis-
tinguish between stationary and moving objects. Using voxel
representation, a color-space segmentation is performed on the
voxels that are assumed to be above the ground plane, followed
by merging (clustering) voxels with similar features. Finally, the
geometric center of each cluster is computed and a KF is applied
to estimate their velocity and position. Azim and Aycard [31] pro-
vide an approach that integrates data from a Velodyne and ego-
motion data. Theirmethod is based on the inconsistencies between
observation and local grid maps represented by an Octomap [20].
An Octomap is basically a 3D occupancy grid with an octree
structure. Potential objects are segmented using a density based
spatial clustering. Global Nearest Neighborhood (GNN) data asso-
ciation and KF are used for tracking. An Adaboost classifier is used
for object classification. In summary, Table 1 provides an overview
of the major environment representation systems proposed in the
aforementioned works in terms of the ground surface estimation,
obstacle representation and techniques used for estimating the dy-
namics of such representations.

1.3. Contribution

This paper proposes a complete framework for ground sur-
face estimation and static/moving obstacle detection as illustrated
in Fig. 1. While in our previous work [41] the focus was on
static/moving obstacle detection, here we extend our framework
with two main contributions: (1) a piecewise surface fitting algo-
rithm, based on a ‘multi-region’ strategy andVelodyne LIDAR scans
behavior, applied to estimate a finite set of multiple surfaces that
Algorithm 1 Dense Point Cloud Generation.
1: Inputs: Point Clouds: P and Ego-vehicle Poses: N
2: Output: Dense Point Cloud: D
3: for scan k = i−m to i do
4: Ṅk ← ICP (BGF (GI (Pi,Ni)), BGF (GI (Pk,Nk)))
5: D←Merge (Pk,Ni, Ṅk)
6: end for

fit the road and its vicinity; (2) a 3D voxel-based representation,
using discriminative analysis, for obstacle modeling. The proposed
approach deals with non-flat roads, and also detectsmoving obsta-
cles by integrating and processing information frompreviousmea-
surements. A set of diversified experiments, and corresponding
result analysis, aimed at evaluating the performance of the pro-
posed approach were performed.

The remaining part of this work is organized as follows.
Section 2 describes the proposed piecewise plane fitting algorithm
and the voxel-based 3D environment modeling. Experimental
results are presented in Section 3, and Section 4 brings some
concluding remarks.

2. Proposed obstacle detection approach

In this section, we present the proposed environment represen-
tation approach to continuously estimate the ground surface and
detect stationary and moving obstacles above the ground-level.
Fig. 2 presents the architecture of the proposedmethod. Each block
is going to be described in the following sections.

2.1. Dense point-cloud generation

This section starts by presenting the process of dense point-
cloud generation, which will be used for the ground surface
estimation. The dense point-cloud construction begins by trans-
forming the point-clouds from ego-vehicle to theworld coordinate
system using GPS/IMU localization data. The result of this trans-
formation is then refined employing point-cloud down-sampling
using ‘Box Grid Filter’, followed by point-clouds alignment using
Iterative Closest Point (ICP) algorithm [42]. This process, detailed
in the following subsections, is summarized in Algorithm 1.
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Fig. 1. The image shows, for a given frame from the KITTI dataset, the projection of the resulting environment representation where piecewise plane estimation of the
ground surface is shown in blue, static obstacles are shown in red, and moving (dynamic) objects are depicted in green. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 2. Architecture of the proposed obstacle detection system.
2.1.1. GPS/IMU localization
Let Pi denote a 3D point-cloud in the current time i, and P =

{Pi−m, . . . , Pi−1, Pi} is a set composed of the current andm previous
point-clouds. Using a similar notation, letN = {Ni−m, . . . ,Ni−1,Ni}

be the set of vehicle pose parameters, a 6-DOF pose in Euclidean
space, given by a high precision GPS/IMU localization system.Nk =

[Rk | Tk] consists of a 3 × 3 rotation matrix Rk and a 3 × 1
translation vector Tk, when k ranges from i − m to i. GI (Pk,Nk)
denotes the transformation of a point-cloud from ego-vehicle to
the world coordinate system using: Rk × Pk + Tk.

2.1.2. Point-cloud registration
– Pre-processing (down-sampling): A ‘Box Grid Filter’ is used for

down-sampling the point-clouds. It partitions the space into
voxels and averages (x, y, z) value of points within each voxel
(the voxel size is set as 0.1 m). This step makes the point-cloud
registration faster, while keeping accurate results. In Algorithm
1 this step is represented by function BGF.

– ICP Alignment: ICP is applied for minimizing the difference
between every point-cloud and the considered reference point-
cloud. The down-sampled version of the current point-cloud Pi
is used as the reference ‘the fixed point-cloud’ and the 3D rigid
transformation for aligning other down-sampled point-clouds
Pk ‘moving point-clouds’ with the fixed point-cloud is estimated.
Assuming Ṅk as the corrected transformation of GPS/IMU after
employing ICP, the so called dense point-cloud (Di) is obtained
using the ‘Merge’ function, by transforming the point-clouds P
into the current coordinates’ system of the ego-vehicle using
the parameters of Ṅk = [Ṙk | Ṫk] and Ni = [Ri | Ti],

Di =

i
k=i−m

R−1i × ((Ṙk × Pk + Ṫk)− Ti) (1)

where


defines the union operation. The integrated point-
cloudD is cropped to the local grid:D← Crop(D). Note that the
subscript i has been omitted to simplify notation. An example
of a dense point-cloud generated using GPS/IMU and ICP regis-
tration is shown in Fig. 3.

2.2. Piecewise ground surface estimation

A piecewise plane fitting algorithm is then applied to D in
order to estimate the ground geometry. Existent methods in
the literature are mainly developed to estimate specific types of
ground surface e.g., planar or quadratic surfaces. In comparison
to the previous methods, we contribute with a piecewise plane
fitting that is able to estimate an arbitrary ground surface e.g., a
ground with a curve profile. The proposed algorithm is composed
by four steps: (1) Slicing, (2) Gating, (3) Plane Fitting, and (4)
Validation. First, a finite set of regions on the ground are generated
in accordance to the car orientation. These regions (hereafter called
‘‘slices’’) are variable in size and follow the geometrical model that
governs the Velodyne LIDAR scans. Second, a gating strategy is
applied to the points in each slice using an interquartile range
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Fig. 3. The generated dense point-cloud of a traffic pole before and after applying ‘Box Grid Filter’ and ‘ICP algorithm’. The red rectangle in the upper image shows the above
mentioned traffic pole. Bottom left shows the corresponding dense point-cloud, generated only using GPS/IMU localization data. Bottom right shows the result obtained after
‘Box Grid Filter’ and ‘ICP algorithm’ steps to align consecutive point-clouds and reduce the localization error. The sparse points located on the right of the pole correspond
to chain that exists between poles. Different colors encode distinct Lidar scans. The dense point-clouds were rotated regarding their original position in the image above to
better evidence the difference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
method to reject outliers. Then, a RANSAC algorithm is used to
robustly fit a plane to the inlier set of 3D data points in each slice.
At last, every plane parameter is checked for acceptance based on a
validation process that starts from the closest plane to the farthest
plane.

2.2.1. Slicing
This process starts from an initial region, defined by the slice S0,

centered in the vehicle andwith a radius of λ0 = 5m, as illustrated
in Fig. 4. This is the closest region to the host vehicle, with the
densest number of points and with less localization errors. It is
reasonable to assume that the plane fitted to the points belonging
to this region is estimated with more confidence and provides the
best fit among all the remaining slices hence, can be considered as
a ‘reference plane’ for the validation task. The remaining regions,
having increasing size, are obtained by a strategy that takes into
account the LIDAR-scans behavior: assumed to follow a tangent
function law.

According to the model illustrated in Fig. 4, the area between
λ0 and λN is defined by a tangent function (2), where α0 =

arctan(λ0/h) and h is the height of the Velodyne LIDAR to the
ground (h ≈ 1.73 m, available in the dataset used). Each
slice/region begins from the endmost edge of the previous slice in
the vehicle movement direction. The edge of the slice Sk is given
by,

λk = h · tan(α0 + k · η ·1α), {k : 1, . . . ,N} (2)

where N is the total number of slices given by N =

αN−α0
η·1α


.

⌊.⌋ denotes truncation operation (the floor function). 1α is the
angle between scans in elevation direction (1α ≈ 0.4°). Here, η
is a constant that determines the number of 1α intervals used to
compute each slice. For η = 2, as represented in Fig. 4, at least two
ground readings of a single Velodyne scan fall into each slicewhich
is enough for fitting a plane. Considering X = (x, y, z), X ∈ D, the
points with λk−1 < x < λk fall into the kth slice: Sk ← Slice(D).
2.2.2. Gating
A gating strategy using the interquartile range (IQR) method is

applied to Sk to detect and reject outliers that may occur in the
LIDAR measurement points. First we compute the median of the
height data which divides the samples into two halves. The lower
quartile value (Q25%) is themedian of the lower half of the data. The
upper quartile value (Q75%) is the median of the upper half of the
data. The range between the median values is called interquartile
range: IQR = Q75% − Q25%. The lower and upper gate limits are
learned empirically, and were chosen as Qmin = Q25% − 0.5 · (IQR)
and Qmax = Q75% respectively which is a stricter range when
compared to the usual Q25% − 1.5 · (IQR) and Q75% + 1.5 · (IQR).
The points X = (x, y, z), X ∈ Dk, with Qmin < z < Qmax are
considered as inliers (denoted by Ṡk) and are the output of the
function: Ṡk ← Gate(Sk). Please refer to Figs. 5 and 6 for a better
clarification of the proposed method.

2.2.3. RANSAC plane fitting
The RANSAC method [35] robustly fits a mathematical model

to a dataset containing outliers. Differently from the Least Square
(LS) method that directly fits a model to the whole dataset
(when outliers occur the least square method will not be
accurate), RANSAC estimates parameters of amodel using different
observations from data subsets.

A sub-sample of the filtered point-cloud in each slice R ⊂ Ṡk is
selected and the 3-point RANSAC algorithm is used to fit a plane to
it. In each iteration, the RANSAC approach randomly selects three
points from the dataset. A plane model is fitted to the three points
and a score is computed. The score is computed as the number of
inliers points whose distance to the plane model is below than a
given threshold. The plane having the largest number of inliers is
chosen as the best fit to the considered data.

A givenplane, fitted to the road and its vicinity pavement,which
are sometimes two planes with few centimeters of difference, is
defined as akx+bky+ckz+dk = 0, denoted byGk ← [ak, bk, ck, dk].
The process for the piecewise RANSAC plane fitting is illustrated in
Fig. 6.
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Fig. 4. Illustration of the variable-size ground slicing for η = 2. Velodyne LIDAR scans are shown as dashed green lines. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 5. (a) An example of the application of the gating strategy on the dense point-cloud. (b) shows the same scene in a lateral view. 3D black bounding boxes indicate the
gates. Inlier points in different gates are shown in different colors, and red points outside the 3D bounding boxes indicate outliers. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Thepiecewise RANSACplane fitting process. Dashedorange shows the lower
and upper gate limits. Dashed black rectangles show the gate computed for the
outlier rejection task. Solid green lines show the estimated plane using RANSAC in a
lateral view. Dashed green line shows the continuation of the Sk plane in slice Sk+1 .
The distance (δZk+1) and angle (δψk+1) between two consecutive planes are shown
in red. Dashed magenta lines show the threshold that is used for the ground/on-
ground obstacle separation task. Points under dashedmagenta lines are considered
as ground points. The original point-cloud is represented using filled gray circles.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2.2.4. Validation of piecewise planes
The plane computed from the immediate region of the host

vehicle is considered as a ‘reference plane’ G0 and is assumed to
have the best fit among the other slices. Due to tangent-based
slicing, the number of Lidar’s ground readings which is considered
to compute the other planes Gk is almost equal (see Fig. 4 for the
case of η = 2).

The validation process starts from the closest plane G1 to the
farthest plane GN . For the validation of piecewise planes, two
features are considered:

1. The angle between two consecutive planes Gk and Gk−1 is
computed as follows: δψk = arctan | n̂k−1×n̂kn̂k−1·n̂k

| where n̂k and
Algorithm 2 Piecewise Ground Surface Estimation.
1: Input: Dense Point Cloud: D
2: Output: Ground Model: G = {G1, . . . ,GN}

3: for slice k = 1 to N do
4: Sk ← Slice (D)
5: Ṡk ← Gate (Sk)
6: Gk ← RANSAC (Ṡk)
7: end for
8: for slice k = 1 to N do
9: if ¬((δψk < τ ◦) ∧ (δZk < ℓ)) then

10: Gk ← Gk−1
11: end if
12: end for

n̂k−1 are the unit normal vectors of the planes Gk and Gk−1
respectively.

2. The distance between Gk−1 and Gk planes computed by δZk =
|Zk− Zk−1|, where Zk and Zk−1 are the z value for Gk−1 and Gk on
the edge of slices: ( xy ) = (

λk
0 ). The z value for Gk can be com-

puted by reformulating the plane equation as: z = −(ak/ck)x−
(bk/ck)y− (dk/ck).

If the angle between the two normals δψk is less than τ ° and
the distance between planes δZk is less than ℓ (τ ° and ℓ are given
thresholds), the current plane is assumed valid. Otherwise, the
parameters from the previous plane Gk−1 are propagated to the
current plane Gk and the two slices are considered to be part of
the same ground plane: Gk ← Gk−1. This procedure is summarized
in Algorithm 2. The output of this algorithm is the ground model
defined by the set G = {G1, . . . ,GN}.
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2.3. Ground/on-ground obstacle separation

Themulti-region groundmodelG is used for the ground/obstacle
separation task. It is performed based on the distance between
the points inside each slice region Sk to the corresponding surface
plane Gk. An arbitrary point p0 inside the surface plane Gk is se-
lected (e.g., p0 = [0, 0,−

dk
ck
]). The distance from a point p ∈ Sk to

the plane Gk is given by the dot product: d = (−−−→p− p0) · n̂k, where
n̂k is the unit normal vector of Gk plane. The points under a certain
reference height dmin are considered as a part of the ground plane
and are removed (see Fig. 6). The remaining points represent ob-
stacles’ points. This process is applied on the lastm previous scans:
O← Obstacle(P).

2.4. Voxelization

Urban scenarios, especially those in downtown areas, are
complex 3D environments, with a great diversity of objects and
obstacles. Voxel grids are dense 3D structures with no dependency
to predefined features which allow them to provide detailed
representation of such complex environments. The voxelization
process is performed using essentially two main steps:

1. Quantizing end-points of the beams: Considering the obstacle
points set O = {Oi−m, . . . ,Oi−1,Oi} obtained from the previous
module, the quantization of X = (x, y, z), X ∈ Ok is attained
by X̌ = ⌊X/υ⌋× υ , where ⌊.⌋ denotes the floor function, and υ
is the voxel size, here chosen to be equal to 0.1 m. This process
converts the original values in O to the quantized set Ǒ.

2. Computing the occupancy values: The repeated elements in Ǒk
denote points within the same voxel. The occupancy value of a
voxel is determined by counting the number of points in Ǒk that
have the same value. The output of this task is a list of voxels
with the occupancy values ofN(Ǒk = U),∀X̌ ∈ U . X̌ = (x̌, y̌, ž),
X̌ ∈ U , and U = unique(Ǒk).

Voxelization is applied to the obstacle points set, O ←

Voxelization(O), and to the dense point-cloud (after ground
removal), D← Voxelization(D).

2.5. Discriminative stationary/moving obstacle segmentation

The obstacle voxel grids O = {Oi−m, . . . ,Oi−1,Oi} and the in-
tegrated voxel grid D are used for the stationary/moving obstacle
segmentation. The main idea is that a moving object occupies dif-
ferent voxels along time while a stationary object will be mapped
into the same voxels in consecutive scans. Therefore, the occu-
pancy value in voxels corresponding to static parts of the envi-
ronment is greater in D. To materialize this concept, first a rough
approximation of stationary and moving voxels is obtained by us-
ing a simple subtraction mechanism. Next, the results are further
refined using a discriminative analysis based on 2D Counters built
in the X–Y plane. The Log-Likelihood Ratio (LLR) of the 2D Counters
is computed to determine the binary masks for the stationary and
moving voxels.

2.5.1. Pre-processing
A subtraction mechanism is used as a pre-processing step. The

cells belonging to the static obstacles in D capture more amount of
data and therefore have a greater occupancy value in comparison
with each of the obstacle voxel grids in O (see Fig. 7(a)). On the
other hand, since moving obstacles occupy different voxels in the
grid, it may be possible that for those voxels some elements of D
and Ok will have the same occupancy values. Having this in mind,
D is initialized as the stationary model. The voxels in D are then
Fig. 7. The process used for the creation of binary masks of the stationary and
moving voxels. (a) shows a moving pedestrian and a stationary obstacle. The car
in the left represents the ego-vehicle. The black, orange, blue and green points are
hypothetical LIDAR hitting points that occur in different time steps. As it can be
seen, since the stationary obstacle captures multiple scans, it will evidence a higher
occupancy value in comparison with the moving obstacle that occupies different
locations. (b) and (c) show 2D counters computed from the candidate stationary
voxel grid D before and after pre-processing (Hs), respectively. (d) shows the 2D
counter computed from the candidate moving voxel grids Hd . (e) shows the output
of the log-likelihood ratio of (c) and (d). Ts and Td are the thresholds used for the
computation of the binary masks. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

compared with the corresponding voxels in each of the obstacle
voxel grids Ok ∈ O. Those voxels in D that have the same value
as corresponding voxels of Ok are considered as moving voxels
and filtered out. Next, the filtered D is used to remove stationary
voxels from the current obstacle voxel grid Oi. Filtered D and Oi
are outputted. To keep the notation simple, we keep the variable
names the same as before pre-processing and dismiss the subscript
of Oi.

2.5.2. 2D counters
We assume that all voxels in the same X–Y cell of the ground-

surface plane have the same state (stationary or moving). Based on
this assumption, 2D counters are built in the X–Y plane for both D
and O (see Fig. 7(c) and (d)). A given cell (x̌, y̌), which can assume
the stationary or the moving state, is subjected to a summation
operation (our 2D counter) as expressed by:

Hs(x̌, y̌) =
n(x̌,y̌)
k=1

D(x̌, y̌, ž) (3)

Hd(x̌, y̌) =
m(x̌,y̌)
k=1

O(x̌, y̌, ž) (4)

where (x̌, y̌, ž) is the location of a cell in a voxel grid. Hs and Hd
are the computed static and dynamic counters, n(x̌, y̌) andm(x̌, y̌)
indicate the number of voxels in the column/bar of (x̌, y̌) in D and
O, respectively.

2.5.3. Log-Likelihood Ratio
The Log-Likelihood Ratio (LLR) expresses howmany timesmore

likely data is under onemodel than another. LLR of the 2D counters
Hs and Hd is used to determine the binary masks for the stationary
and dynamic voxels, and is given by:

R(x̌, y̌) = log
max{Hd(x̌, y̌), ε}
max{Hs(x̌, y̌), ε}

(5)
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Table 2
Detailed information about each sequence.

Seq. name No. of frames Host vehicle situation Scene condition Object type No. of objects
Stationary Moving

(1) 154 Moving Highway C.Y.P 11 5
(2) 447 Moving Highway C.P 67 6
(3) 373 Hybrid Highway C 25 14
(4) 340 Moving Downtown Y.P 27 25
(5) 376 Hybrid Hybrid C.Y.P 1 14
(6) 209 Stationary Downtown Y.P 0 17
(7) 145 Stationary Downtown P 0 10
(8) 339 Moving Highway C 0 18
where ε is a small value (we set it to 1) that prevents dividing by
zero or taking the log of zero. The counter cells belonging tomoving
parts have higher values in the computed LLR. Static parts have
negative values and cells that are shared by both static andmoving
obstacles tend toward zero. By applying a threshold on R(x̌; y̌), 2D
binary masks of the stationary and moving voxels (see Fig. 7(e))
can be obtained using the following expressions:

Bd(x̌, y̌) =

1 if R(x̌, y̌) > Td
0 otherwise (6)

Bs(x̌, y̌) =

1 if R(x̌, y̌) < Ts
0 otherwise (7)

Ts and Td are the thresholds used to compute the 2D decisionmasks
for detecting the most reliable stationary and moving voxels. The
static (Bs) and dynamic (Bd) binary 2D masks are applied to all
levels ofD andO voxel grids to generate voxels labeled as stationary
(VS) or moving (VM ).

3. Experimental results

The presented approach was implemented in MATLAB and
tested on the KITTI database [43]. Quantitative and qualitative
evaluations were performed to evaluate the robustness and
performance of the proposed method. A brief description of the
dataset and the methodology used in the experiments, as well as
the experimental results on ground surface estimation and object
detection (OD), are provided in the next sections.

3.1. Dataset—‘Object Tracking Evaluation’

The KITTI dataset was captured using a Velodyne 3D laser
scanner and a high-precision GPS/IMU inertial navigation system.
The Velodyne HDL-64E spins at 10 frames per second with 26.8°
vertical field of view (+2°/−24.8° up and down), provides 64
equally spaced angular subdivisions (approximately 0.4°) and
angular resolution of 0.09°. The maximum recording range is
120 m. The inertial navigation system is a OXTS RT3003 inertial
and GPS system with a 100 Hz sampling rate and a resolution of
0.02 m/0.1°.

3.2. Experimental setup

For the evaluation task, we have used 8 sequences from the
‘Object Tracking Evaluation’ set of the KITTI Vision Benchmark
Suite. Two of the sequences (6 and 7) were taken by a stationary
vehicle and four of them (1, 2, 4 and 8) were taken by a moving
vehicle. In the remaining sequences the vehicle went through both
stationary and moving situations. The dataset was captured in
highways and roads in urban and rural areas (highway) or alleys
and avenues in downtown areas (downtown). Different types of
objects such as cars (C), pedestrians (P) and cyclists (Y) are available
Table 3
Main parameter values used in the proposed algorithm.

m η τ ° ℓ dmin υ Td Ts

6 6 10 10 20 10 5 50

in the scenes. The total number of objects (stationary and moving)
that are visible in the perception field of the vehicle is also reported
per sequence. The characteristics of each sequence are summarized
in Table 2.

The parameter values used in the implementation of the
proposed algorithm are reported in Table 3. The first parameter
m is a general parameter indicating the number of merged scans.
The next four parameters, (η, τ °, ℓ and dmin) are related to the
ground surface estimation. η shows the number of multiplication
of1α used to compute each slice limits. τ ° and ℓ are themaximum
acceptable angle and distance between two planes respectively
that are applied in the validation phase of the piecewise plane
fitting. dmin is a threshold in centimeters. Pointswith heights lower
than dmin from the piecewise planes are considered as part of
the ground plane. The last three parameters (υ , Td and Ts) are
used to set the obstacle detection algorithm. υ is the voxel size
in centimeters. Td and Ts are thresholds for computing the binary
mask of stationary and moving voxels. The proposed approach
detects obstacles in an area covering 25 m ahead of the vehicle,
5 m behind it and 10 m on the left and right sides of the vehicle,
with 2 m in height. Please notice that m and η were selected
experimentally as described at the end of Section 3.3.1 (see also
Fig. 9).

3.3. Quantitative evaluation

Ground-surface estimation and OD evaluation using LIDAR is
a challenging task. To the best of authors knowledge, there is
no available dataset with ground truth for ground estimation
or general OD.1 The closest work to ours is presented in [34],
where their evaluation methodology for OD is carried out as
follows: detections are projected into the image plane and a human
observer performs a visual analysis in terms of: missed and false
obstacles (and also for traffic isles). They presented one example
of ground evaluation for the case of a quadratic road surface. We
followed a similar approach for evaluating the proposed obstacle
detection system.

For the evaluation of the ground estimation process, inspired
by [38], we assume that all objects are placed on the same surface
as the vehicle and that the base points of the 3D bounding boxes
available for ground truth, are located on the real ground surface.
An example of ground truth data is shown in Fig. 8.
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Fig. 8. An example of the ground truth data. The top image shows a screen-shot
from the KITTI dataset with 3D bounding boxes being used to represent objects in
the scene. The 3D bounding boxes are available in the KITTI dataset. This boxes are
used for the evaluation of moving obstacle detection task. The 3D bounding boxes
of stationary and moving objects are discriminated and labeled manually by an
annotator. The bottom figure shows the corresponding 3D bounding boxes in the
Euclidean space. Green and red indicatemoving and stationary objects, respectively.
The black dots represent the bases of the 3D bounding boxes, and are used to
evaluate the ground estimation. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Evaluation of the proposed ground estimation algorithm by varying the
number of integrated scansm and parameter η related to the slice sizes.

3.3.1. Evaluation of the estimated ground
The average distance from the base of labeled objects (ground-

truth) to the estimated ground surface (detailed in Section 2.3) is
used as a measure of error. The average displacement error (ADE)
for every frame is defined by,

ADE =
1
N

N
i=1

|(
−−−→
pgi − p) · n̂| (8)

where pgi denotes the base of the ground-truth 3D bounding box of
the ith object, with i = (1, . . . ,N);N = total number of objects,

and |(
−−−→
pgi − p) · n̂| represents the absolute distance from the

1 The benchmarks usually provide specific object classes e.g., pedestrians,
vehicles.
Fig. 10. An example of the obstacle detection evaluation. Red and green voxels
show results of the proposed method. The 3D bounding boxes of stationary and
moving obstacles are shown in red and green respectively. Only green boxes
are considered for the evaluation of the moving obstacle detection algorithm
performance. Blue arrows show two missed obstacles (thin and small poles). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

base of object i to the estimated plane on that location. The
variables p and n̂ are the point and unit normal vector that define
the corresponding surface plane, respectively. The total average
displacement error (TADE) for all sequences is computed by,

TADE =

N
k=1

fk ×


1
M

M
j=1

ADEkj


N

k=1
fk

(9)

where j ranges from 1 to the total number of frames M , fk is the
number of frames for a given sequence k, and k = (1, . . . ,N)with
N = 8 denotes the total number of sequences.

To evaluate the proposed ground estimationmethod, TADE was
computed for different number of integrated frames m and for
different number of η (η is the multiplication of1α that is used to
compute each slice). The results over all sequences are reported in
Fig. 9. Theminimum TADE = 0.086 is achieved by the combination
ofm = 6 and η = 6.

3.3.2. Evaluation of the stationary/moving obstacle detection
The performance analysis follows a similar procedure as

described in [34] using a visual analysis performed by a human
observer. A number of 200 scans (25 scans for each sequence) of
different sceneswere selected randomly out of themore than 2300
scans available on the dataset. An evaluationwas performed for the
general obstacle detection and another one for themoving obstacle
detection (see Fig. 10).

– For evaluating the general obstacle detection, voxel grids of sta-
tionary/moving obstacles are projected into the corresponding
image, and a human observer performs an approximate visual
analysis in terms of: ‘missed’ and ‘false’ obstacles. It should be
noticed that every distinct element identified above the terrain
level is considered as an obstacle (e.g., pole, tree, wall, car and
pedestrian). The total number of missed obstacles is 186 out of
3011. The total number of false detected obstacles is 90. Table 4
reports the details of the obstacle detection results for each se-
quence, in terms of the numbers of missed and false obstacles.
The highest number ofmissed obstacles occurs in sequences (1)
and (2) that containmany thin and small poles.Most of the false
detections happen in sequences (6) and (7) that contain slowly
moving objects. Some parts of very slowly moving objects may
have been seen several times in the same voxels and therefore,
maywrongly be integrated into the staticmodel of the environ-
ment. The shadow of the wrongly modeled stationary obstacle
stays for a few scans and causes this false detection.

– The proposed obstacle detectionmethod is able to discriminate
moving parts from the static map of the environment. There-
fore, we performed an additional evaluation for measuring the
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Table 4
Results of the evaluation of the proposed obstacle detection algorithm.

Seq. name No. of obstacles No. of missed obstacles No. of false obstacles
All Obst. Moving All Obst. Moving All Obst. Moving

(1) 501 59 83 0 0 4
(2) 288 28 56 0 0 7
(3) 281 61 24 1 0 9
(4) 381 94 10 2 0 0
(5) 254 83 1 0 7 0
(6) 791 551 9 0 37 8
(7) 336 215 1 0 46 2
(8) 179 110 2 0 0 1

Total 3011 1201 186 3 90 31
Fig. 11. Sample screenshots of obstacle detection results obtained for sequences 1–8 as listed in Table 2 and its corresponding representation in 3D. Piecewise ground planes
are shown in blue. Stationary and moving voxels are shown in red and green respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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moving obstacle detection performance. Among the 1201mov-
ing obstacles present in the considered scans, only 3moving ob-
stacles were missed. A number of 31 obstacles were wrongly
modeled as moving parts of the environment, mainly due to lo-
calization errors. Localization errors cause thin poles, observed
in different locations by the ego-vehicle’s perception system, to
be wrongly considered as moving obstacles. The result for each
sequence is also shown in Table 4.

3.4. Qualitative evaluation

In order to qualitatively evaluate the performance of the
proposed algorithm, 8 challenging sequences were used (see
Table 2). Themost representative results are summarized in Fig. 11.
The proposedmethod detects and classifies stationary andmoving
obstacles’ voxels around the ego-vehicle when they get into the
local perception field.

In the first sequence, our method detects a cyclist and a car
as moving obstacles, while they are in the perception field, and
models the walls and stopped cars as part of the static model of
the environment. The second and third sequences show moving
ego-vehicle in urban areas roads. The proposed method models
trees, poles and stopped cars as part of the stationary environment
and moving cars and pedestrians as dynamic obstacles. The
sequence number (4) shows a downtown area,where the proposed
method successfully modeled moving pedestrians and cyclists
as part of the dynamic portion of the environment. Pedestrians
without amovement correctly becomepart of the stationarymodel
of the environment. Sequence number (5) shows a crosswalk
scenario. Our method models passing pedestrians as moving
objects, represented in the image by the green voxels. In sequences
number (6) and (7), the vehicle is not moving. Most of the moving
objects are pedestrians whom our method successfully detects. In
particular, notice the last image of sequence number (6) and the
first image of sequence number (7) which represent very slowly
moving pedestrians thatmay temporarily bemodeled as stationary
obstacles, which will not be critical in practical applications.
Sequence number (8) shows a road with moving vehicles. The
proposed method performs well on most of the moving vehicles.

3.5. Computational analysis

There is a compromise between the computational cost ver-
sus the detection performance of the method presented here.
Clearly, as the number of integrated scans increases, the perfor-
mance in terms of stationary and moving object detection is im-
proved. However, it adds an additional computational cost and
makes the method becomes slower. On the other hand, less in-
tegrated scans make the environment model weaker. Overall, the
proposed method presents satisfactory results when the number
of integrated scans is greater than 4.

The computational cost of the proposedmethod depends on the
size of the local grid, the size of a voxel, the number of integrating
scans, and the number of non-empty voxels (this is because only
non-empty voxels are indexed and processed). The experiments
reported in this section were conducted on the first sequence and
with a fixed sized local grid. The scenario has in average nearly 1%
non-empty voxels. The size of a voxel and the number of integrat-
ing point-clouds are two key parameters that have a correspon-
dence with the spatial and temporal properties of the proposed
algorithm respectively, and directly impact on the computational
cost of the method. The experiment was carried out using a quad
core 3.4 GHz processor with 8 GB RAMunderMATLAB R2015a. The
average speed of the proposed algorithm (in frames/scans per sec-
ond) together with the value of each parameter (voxel size and
number of integrating scans) are reported in Fig. 12. As it can be
Fig. 12. Computational analysis of the proposed method as a function of the
number of integrated scansm and the voxel size υ , where the voxel volume is given
by υ × υ × υ .

Table 5
The percentages of the computational loads of the dif-
ferent steps of the proposed system: (a) dense point
cloud generation, (b) piecewise ground surface estimation,
(c) ground/on-ground obstacle separation and voxeliza-
tion and (d) stationary/moving obstacle segmentation.

(a) (b) (c) (d)

83.2% 7.1% 7.7% 2%

seen the number of integrated scans has the greatest impact on the
computational cost of the proposedmethod. The proposedmethod
configured with the parameters listed in Table 3 works at about
0.3 fps.

In order to evaluate what steps of the algorithm are more
time consuming, the percentages of the processing loads of the
different phases are reported in Table 5. The first stage is the most
computationally demanding part of the algorithm, mostly because
of the ICP algorithm (consuming 83.2% of the computational
time). Piecewise ground surface estimation and ground/obstacle
separationmodules are accounted for 14.8% of total computational
time.

4. Concluding remarks and future work

The 3D perception of a dynamic environment is one of the
key components for intelligent vehicles to operate in real-world
environments. In this paper, we proposed a highly descriptive
3D representation for obstacle detection (OD) in dynamic urban
environments using an intelligent vehicle equipped with a
Velodyne LIDAR and an Inertial Navigation System (GPS/IMU).
It has an application in safety systems of the vehicle to avoid
collisions or damages to the other scene participants. A novel
ground surface estimation is proposed using a piecewise plane
fitting algorithm, based on a ‘multi-region’ strategy and on a
RANSAC-approach to model the ground and separate ground/on-
ground obstacles. A voxel-based representation of obstacles above
the estimated ground is also presented, by aggregating and
reasoning temporal data using a discriminative analysis. A simple
yet efficientmethod is proposed to discriminatemoving parts from
the static map of the environment.

Experiments on the KITTI dataset, using point-cloud data
obtainedby aVelodyne LIDARand localizationdata froman Inertial
Navigation System (GPS/IMU), demonstrate the applicability of the
proposed method for the representation of dynamic scenes. The
system was proven robust and accurate, as the result of both a
quantitative and a qualitative evaluation.

We propose two new directions as future work. First, the color
information from the image can be incorporated to provide a
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more robust stationary/moving obstacle detection. Second, the
identified moving obstacles can be further analyzed for object
recognition and tracking purposes.
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