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Safe and reliable autonomous navigation in unstructured environments remains a challenge for field robots. In
particular, operating on vegetated terrain is problematic, because simple purely geometric traversability analy-
sis methods typically classify dense foliage as nontraversable. As traversing through vegetated terrain is often
possible and even preferable in some cases (e.g., to avoid executing longer paths), more complex multimodal
traversability analysis methods are necessary. In this article, we propose a three-dimensional (3D) traversability
mapping algorithm for outdoor environments, able to classify sparsely vegetated areas as traversable, without
compromising accuracy on other terrain types. The proposed normal distributions transform traversability
mapping (NDT-TM) representation exploits 3D LIDAR sensor data to incrementally expand normal distribu-
tions transform occupancy (NDT-OM) maps. In addition to geometrical information, we propose to augment
the NDT-OM representation with statistical data of the permeability and reflectivity of each cell. Using these
additional features, we train a support-vector machine classifier to discriminate between traversable and non-
drivable areas of the NDT-TM maps. We evaluate classifier performance on a set of challenging outdoor
environments and note improvements over previous purely geometrical traversability analysis approaches.
C© 2016 Wiley Periodicals, Inc.

1. INTRODUCTION

In recent years, there has been increasing interest in ad-
vancing robot technology in outdoor, off-road, and natural
environments. For example, search and rescue robots, as
well as autonomous machines in forestry and mining ap-
plications, need to cope with unstructured outdoor envi-
ronments. Terrain traversability analysis is essential for un-
manned ground vehicles (UGV) operating in unstructured
environments, because the ability to detect and classify the
surrounding obstacles is a necessity for safe navigation per-
formance. Most existing obstacle detection systems rely on
geometric representations of the environment, most com-
monly constructed using either a vision system, or a LIDAR.
However, for a UGV operating in vegetated environments,
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a naive geometric representation is usually not sufficient for
efficient navigation, as vegetation can often be mistakenly
interpreted as an obstacle by the perception system. In prac-
tice, traversing through sparse vegetation is often possible
and may be preferable in order to avoid executing longer
paths. In cases of densely vegetated environments, it can
even be the only acceptable option for the UGV. For exam-
ple, the grass shown in Figure 1 could be driven through, but
perception systems relying only on geometric features tend
to interpret it as nontraversable. To cope with limitations
of purely geometrical traversability analysis in vegetated
natural environments, a substantial research effort has fo-
cused on appearance-based terrain classification. However,
distinguishing vegetation from other obstacles is not suffi-
cient for safe navigation because solid obstacles (e.g., large
rocks, tree trunks) hidden behind the vegetation would pose
a great risk to the robot, if it were to base traversability de-
cisions solely on vegetation classification.
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Figure 1. A UGV within tall grass. Densely vegetated terrain
is often mistakenly interpreted as obstacles by current state-of-
the-art perception systems.

In this article, we propose a novel LIDAR-only 3D
traversability mapping approach, which goes beyond the
traditional statistical interpretation of local point clouds.
Our algorithm is designed for unstructured outdoor envi-
ronments and is able to classify sparsely vegetated areas
as traversable, while still detecting partially visible objects,
such as large rocks and tree stumps. Our work builds on
the normal distributions transform occupancy map (NDT-
OM) (Saarinen et al., 2013b) spatial representation — a voxel
grid structure that models local surfaces in each cell as Gaus-
sian probability distributions. We propose an extension of
the NDT-OM representation and subsequently use the addi-
tional information in our traversability analysis algorithm.
In particular, we augment the NDT-OM representation with
two additional statistics. First, for each cell, we represent the
intensity of the reflected laser beams as a one-dimensional
Gaussian distribution. Second, we model the permeability
of the geometrical structure in each cell as a Bernoulli pro-
cess. In this manner, we extract three additional features to
aid us in traversability classification — the mean of the in-
tensity distribution, its variance, and the expected value of
the permeability.

The contributions of this paper are twofold. First, we
augment the NDT-OM representation with two additional
sources of information — intensity and permeability — and
perform a detailed analysis of the effects of vegetation on the
augmented NDT-OM cells. Second, we propose two classi-
fication algorithms learned from experience, which outper-
form previous work on traversability analysis within the
NDT framework. The first algorithm — C-support vector
classification (C-SVC), performs classification for each cell
of the NDT-TM using the roughness, inclination, perme-
ability, and intensity distribution. The second algorithm —
augmented constant threshold classification (ACTC), first
performs a purely geometric CTC as per (Stoyanov et al.,
2010) for each cell in the NDT-TM, after which the C-SVC is
performed only for the cells classified as nontraversable by
the CTC method. Both of the methods perform classification

directly using the proposed NDT-TM representation, which
permits using significantly lower grid resolutions than re-
ported in previous works on LIDAR-based traversability
estimation in vegetated environments. Using a lower reso-
lution model in turn has positive implications on both the
memory requirements (as fewer cells need to be stored), as
well as the runtime performance of our algorithms (a lower
number of traversability queries need to be performed). For
both of the proposed algorithms, we avoid the burdensome
hand-labeling of data by collecting the training examples
autonomously from semicontrolled environments.

In the rest of this article, we first review the rele-
vant contributions in the area of spatial modeling and
terrain traversability analysis, especially in vegetated en-
vironments. The foundation and details of the proposed
traversability classification methods are presented in Sec-
tion 3. Section 4 introduces the measurement platforms and
discusses implementation details, whereas Section 5 pro-
vides the results of the feature analysis experiments and
the full-scale field trials. Finally, Section 6 concludes with a
summary of the key findings and a discussion of limitations
and future work.

2. RELATED WORK

Terrain traversability analysis is used as a mean for generat-
ing traversability maps of the environment that quantify the
difficulty a UGV would encounter in passing through a par-
ticular region. Typically, traversability maps are platform
dependent because the locomotion capabilities of different-
sized platforms may differ significantly (Molino et al., 2007).
The essence of traversability analysis is deducing whether
an area is traversable, given the platform constraints and
sensor data. Nonetheless, in order to generate traversabil-
ity maps, a representative spatial model of the surrounding
environment is needed. Therefore, this section reviews the
relevant contributions in the area of spatial modeling, as
well as terrain traversability analysis. Because traversing in
vegetated environments is particularly challenging for field
robots, special attention is given to vegetation classification
and traversability analysis within vegetated areas.

2.1. Spatial Modeling

Several different spatial modeling approaches have been
successfully applied in robotic mapping systems. One of the
most predominant spatial modeling technique in robotics
applications is occupancy grid mapping, originally intro-
duced by Moravec & Elfes (1985). Occupancy grid maps rep-
resent the environment as a regular grid, in which each grid
cell models the probability of it being occupied. Originally,
occupancy grids were used as a 2D modeling tool, but they
are easily scalable to three dimensions. However, 3D occu-
pancy grids require a lot of memory, thus rendering them
infeasible for large-scale mapping applications. A popular
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implementation of 3D occupancy maps is Octomap (Hor-
nung et al., 2013), which is based on an octree grid struc-
ture. Octrees have natural multiresolution support, which
provides an efficient way to maintain unobserved portions
of the map, thus reducing the memory requirements.

Elevation mapping is a grid-based 2.5D spatial rep-
resentation. Each cell in the 2D grid stores the height of
the surface in the corresponding area (Siciliano & Khatib,
2008). Elevation maps have been popular mapping tools
for outdoor applications since the early years of robotics.
For example, Bares et al. (1989) use an elevation map for
footstep placement selection of a legged planetary rover.
However, the elevation map representation reduces the di-
mensionality from 3D to 2.5D; that is, it can only model
a single surface per cell. Therefore, elevation maps cannot
model overhanging structures (e.g., bridges, tunnels, tree
branches) correctly. Another drawback of elevation map-
ping is that the height of areas with little or no data cannot
be reliably expressed.

To take the missing data problem into consideration,
Lang et al. (2007) propose the use of adaptive nonstationary
kernel regression in Gaussian processes (GPs) to deal with
varying data densities in terrain models. The central idea of
GP terrain modeling is to represent the height value of each
point as a function of its 2D space coordinates, and to sub-
sequently approximate the value using a set of Gaussian
distributions in function space. The available sensor data
are used to learn the hyperparameters of a GP, which can
then be used to perform regression for any point in 2D space
and obtain an interpolated height value, resulting in a con-
tinuous spatial model. For example, Vasudevan et al. (2009)
propose an approach for modeling large-scale and com-
plex terrain using single neural network-based GP, which
they demonstrate to preserve many of the spatial features
in the terrain. Hadsell et al. (2010) extended the traditional
kernel-based learning approaches for estimating continu-
ous surfaces by providing upper and lower bounds on the
surface. This was done by exploiting visibility constraints
of the sensor w.r.t. the terrain surface and subsequently ap-
plying kernel-based regression techniques to improve the
precision of the terrain geometry estimate.

To relax the functional constraint of a single height
value per location of GPs and elevation mapping, Triebel
et al. (2006) proposed multilevel surface (MLS) maps: an ex-
tension of elevation mapping, in which each cell can store
multiple height values. The proposed model was used to
perform localization and navigation in an outdoor environ-
ment with several overhanging obstacles, where the robot
successfully traversed across and under a bridge at the site.

Polygonal meshes are another spatial representation
method that is particularly popular within the computer
graphics community. A polygonal mesh is a graph of in-
terconnected vertices in which each polygon represents a
facet in the mesh. To generate the best reconstruction result
from noisy point cloud data, special care has to be taken

in filtering and handling of uncertainty. For example, Wie-
mann et al. (2010) present a method to automatically gener-
ate triangle meshes from noisy registered point cloud data.
However, the resulting triangle mesh is generated as a post-
processing step, and it is not maintained online. Rusu et al.
(2009) propose a complete pipeline from sensor data to local-
ization, mapping, and path planning, where the maintained
map is a polygonal mesh generated from point cloud data.
Similarly, Garrido et al. (2013) exploit triangle meshes rep-
resenting 3D surfaces to perform path planning for robots
operating outdoors.

The normal distributions transform (NDT) is a com-
pact spatial representation, originally introduced by Biber &
Strasser (2003) in the context of 2D scan matching. NDT is a
grid-based representation, much like occupancy grid maps
but capable of obtaining similar accuracy while using much
larger cell size (Stoyanov et al., 2013). The key idea of NDT
is that the observed range points are represented as a set of
Gaussian probability distributions computed for each cell.
That is, each distribution describes the probability of a point
being measured at a particular physical location. NDT Oc-
cupancy Map (NDT-OM) is an extended NDT map, which
enables recursive updates of sequential measurements and
models the occupancy probability of the cell (Saarinen et al.,
2013b). As a result, NDT-OM is an efficient representa-
tion for long-term, large-scale mapping, which maintains
its consistency even in dynamic environments. In addition,
Stoyanov et al. (2013) demonstrate that NDT spatial models
allow significantly lower resolution to be used compared to
other state-of-the-art 3D spatial modeling techniques, with-
out compromising the model accuracy. An illustration of an
NDT map is shown in Figure 2, along with a photograph of
the observed environment and measurement platform.

2.2. Traversability Analysis

In a recent survey by Papadakis (2013), different traversabil-
ity analysis methods were classified into three major con-
stituents — namely, proprioceptive, appearance-based, and
geometry-based approaches; the latter two composed the
domain of exteroceptive approaches. Furthermore, Pa-
padakis (2013) notes that hybrid approaches do exist, which
may further imply the use of additional sensor modalities
other than LIDARs, cameras, or proprioceptive sensors.

Traversability analysis methods based on propriocep-
tive sensing are useful in learning models that captures the
difficulty encountered while a vehicle is traversing a given
terrain. For example, Martin et al. (2013) construct large-
scale traversability maps for vehicles performing repeated
activity in a bounded environment, based on the vehicle
power consumption, longitudinal slip, lateral slip, and ve-
hicle orientation. However, proprioceptive sensors cannot
predict the traversability of terrain that is about to be visited
by the robot, and thus cannot be used to assess the driv-
ability of the robot surroundings. Therefore, proprioceptive
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Figure 2. (a) A photograph from a forest environment featuring an UGV. (b) An illustration of an NDT map generated from forest
data.

sensing should be further combined with long-range sens-
ing modalities in order to avoid possible collisions with ob-
stacles. Howard et al. (2006), for example, propose a learn-
ing method that associates proprioceptive sensor data un-
derfoot with previously acquired visual information of the
same terrain in order to train a model for predicting terrain
properties from visual appearance only. A similar approach
is presented in (Bajracharya et al., 2009).

Appearance-based approaches to traversability anal-
ysis reformulate the problem as an image-processing and
classification task, and thus they usually choose between
a discrete set of terrain classes, rather than regressing on
traversability. Angelova et al. (2007) propose a method for
learning a hierarchical classifier for color images to differ-
entiate between sand, soil, asphalt, grass, wood chip, and
gravel. Kim et al. (2007) perform natural terrain classifi-
cation between traversable and nontraversable regions by
using super-pixels extracted from an oversegmentation of
an image. It was shown that these regions of homogeneous
visual content are superior to rectangular image patches
that are typically sensitive to the tessellation resolution and
occlusions. However, an evident complementarity exists be-
tween LIDAR and vision sensors, which has been exploited
in several works in order to increase the overall robustness
or to extend the range of operations. For example, Zhou
et al. (2012) introduce a self-supervised sensing approach
that attempts to robustly identify a drivable terrain surface
for UGVs operating in forested terrain, in which both LI-
DAR and vision sensors were employed. The LIDAR data
are exploited to train a visual classifier to discriminate be-
tween the ground and nonground regions in the image, but
the final terrain class prediction is performed solely from
visual data.

Nonetheless, the majority of terrain traversability anal-
ysis methodologies are based on geometric processing, al-
though the geometric information is often fused with other
sensor modalities in order to improve the robustness of clas-

sification. Typically, a terrain model is built from 3D data
and used to extract a set of features. On top of such a model,
more complex and higher-level processing could be pur-
sued by further taking into account a robot model, as well
as stability and kinematic constraints.

One of the early approaches for geometric traversabil-
ity analysis is to compute gradients for each cell in an el-
evation map, which are then compared against platform-
specific thresholds (Chang et al., 1999). Another similar ap-
proach is to compute a traversability index for each cell in
an elevation map using the slope and roughness of the ter-
rain (Ye & Borenstein, 2004). Thrun et al. (2006) propose a
more probabilistic grid-based approach, which forms the
base for the terrain analysis module of the vehicle Stanley
that won the DARPA Grand Challenge. This approach labels
the cells as free, occupied, or unknown, based on vertical
distance between nearby 3D LIDAR points. A probabilistic
model was developed to take into account the errors in the
robot’s pose estimation.

Vandapel et al. (2004) present a method that uses local
3D point statistics to segment LIDAR data into three classes:
clutter to capture grass and tree canopy, linear to capture
thin objects like wires or tree branches, and surface to cap-
ture solid objects like ground terrain surface, rocks, or tree
trunks. Similarly Lalonde et al. (2006) classify 3D LIDAR
data online, based on their salient features (i.e., scatterness,
surfaceness, and linearness). These features were computed
using principal component analysis (PCA) of the neighbor-
ing 3D points. Gaussian Mixture Models (GMMs) for these
classes were learned by employing expectation maximiza-
tion on these features. The classification results were filtered
to account for outliers in the results, after which the ground
was discriminated from other surfaces. This approach has
a similar idea to ours in that the classification model for
complex 3D environments is learned from labeled point-
cloud data. However, our approach considers the estimated
permeability and the shape of the intensity distribution in
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addition to the local geometry statistical analysis, thus im-
proving classification accuracy in vegetated environments.
In addition, the underlying NDT representation of our ap-
proach allows the use of significantly larger cell size. Fur-
thermore, training the model in Lalonde et al. (2006) re-
quires tedious hand-labeling, whereas our approach relies
on automatic teaching example collection.

Santamaria-Navarro et al. (2015) present a high-level
offline classification mechanism that learns traversable re-
gions from large 3D point clouds gathered with a 3D LI-
DAR. The traversability is modeled as a GP and trained
with automatically labeled data set. To perform the clas-
sification, slope and roughness are computed for all the
points, using PCA. Two different classification approaches
were proposed. The first employs GP regression and re-
lies only on positive teaching samples, which are collected
from the robot footprints. The second approach performs
GP classification that requires teaching samples from both
classes. Therefore, the remaining unlabeled points are ran-
domly sampled to get the negative teaching examples. It
was shown that the GP classification, although computa-
tionally more expensive, increases the classification accu-
racy. Contrary to our approach, the classification is only
based on the slope and roughness, which may sometimes
prove insufficient. Moreover, we perform the classification
in the NDT framework instead of directly over the point
clouds, which decreases the computational complexity and
adds the benefit of making more informed decisions over
data collected from multiple viewpoints.

Terrain traversability analysis within the NDT frame-
work has only been addressed by Magnusson (2009) and
Stoyanov et al. (2010), in which the CTC algorithm pro-
posed compares the roughness and inclination calculated
from each cell distributions against predefined thresholds
in order to generate a traversability map for path planning
purposes. These features are determined based on the eigen-
vectors and eigenvalues of the covariance matrices associ-
ated with each cell. Our method extends the CTC algorithm
by adding intensity distribution and permeability as fea-
tures and learning the classification model from vehicle ex-
perience. The CTC algorithm has been shown to perform
well in structured environments, but underperforms in un-
structured environments. Our method improves the classi-
fication accuracy in complex environments.

2.3. Vegetation Detection

Most of the current traversability analysis methods con-
sider obstacles as rigid and static, which fails to deal
with vegetation-like obstacles. This problem has been ap-
proached by classifying vegetation to distinguish it from
other types of obstacles. One often exploited property of
vegetation is the reflectance of chlorophyll, which is found
in living plants, that strongly reflects near-infrared (NIR)
light but absorbs blue and red visible light (Myneni & Hall,

1995). For example, Bradley et al. (2004) present a multi-
spectral camera-based solution for detecting chlorophyll-
rich vegetation, based on NIR light reflectance properties.
Vegetation was detected by subtracting each pixel in the red
channel of the visible-light image from the corresponding
pixel in the near-infrared image and thresholding the result.
The reflectivity of chlorophyll was also exploited by Wurm
et al. (2014), wherein an SVM-based classifier was trained
to classify grass in semistructured environments, such as
parks. The classifier was trained in a self-supervised way
by employing a vibration-based classifier to detect the sur-
face type currently traversed by the robot.

Nguyen et al. (2012b) propose to detect vegetation in
unstructured environments using a spreading algorithm for
identifying color and texture dissimilarities between the
neighboring pixels in multispectral images. The seed pix-
els, from which the spreading search is started, are selected
by thresholding chlorophyll-rich vegetation pixels. In par-
allel, another spreading algorithm is carried out based on
spectral reflectance. The results from the parallel-spreading
searches are combined to form the final classification. The
approach is reported to result in vegetation detection robust
to illumination effects. In previous work, the authors also
presented a method to double-check the passable vegeta-
tion by mounting an air compressor device in front of the
vehicle and using motion detection techniques to confirm
the vegetation classification (Nguyen et al., 2012a).

Another property of vegetation is that range measure-
ments often penetrate sparse vegetation, contrary to solid
obstacles. Lacaze et al. (2002) were first to exploit this prop-
erty by counting the hits and misses of laser beams in cells
in a voxel grid and using the obtained density value to clas-
sify solid obstacles. Macedo et al. (2000) present a statistical
analysis of the range data produced by 2D LIDAR, with
the goal of determining whether an obstacle is a rock (non-
traversable) or a patch of grass (traversable). The proposed
classifier compares local estimates of the variance and the
skewness of the range distribution to predefined thresh-
olds, resulting in robust classification even if the obstacles
are partially occluded by vegetation. Castano & Matthies
(2003) propose a related approach, applied to real-time fo-
liage detection from 2D LIDAR measurements. In contrast
to the work of Macedo et al. (2000), they use the expected
localities and continuities of an obstacle, both in space and
in time. The method first identifies those returns likely to be
obstacles and then prunes them to eliminate false positives.

Wellington & Stentz (2004) propose a method for pre-
dicting the load-bearing surface within vegetation. They
apply an online adaptive method to learn from experience
the mapping between the real ground height and the LI-
DAR measurements. The environment is modeled as a set
of voxels, and the number of LIDAR pass-throughs (num-
ber of LIDAR rays passing through the voxel) is recorded,
along with the LIDAR rays that hit the voxel. Voxels that
contain a mixture of hits and misses are then assumed to
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contain vegetation. In addition, the proposed approach ex-
ploits the maximum laser remission values, simple statistics
on height, and the salient features as in Lalonde et al. (2006)
using a similar resolution. Their selection of features is most
similar to ours. However, instead of the maximum intensity
values, we take advantage of the intensity distributions that
better captures the true underlying intensities of cells and
provides us the intensity variance as an extra feature to use
in the classification. Furthermore, we calculate the rough-
ness and slope, whereas their approach relies on salient fea-
tures. Nonetheless, their method is designed to estimate the
ground-bearing surface within dense vegetation, whereas
our goal is to classify solid nontraversable obstacles within
sparse vegetation. That is, our approach classifies dense
vegetation as an obstacle, while their method returns the
estimated height of the load-bearing surface regardless of
the vegetation density. This behavior is undesirable in our
application scenario, because we need to avoid hitting solid
obstacles that may be hidden behind the vegetation.

In subsequent work, Wellington (2005) and Welling-
ton et al. (2006) propose a terrain model that includes spa-
tial constraints. The work introduced Markov random field
(MRF) models and Hidden semi-Markov model (HSMM)
to model 3D structure of the terrain. The MRFs encode the
assumptions that ground heights vary smoothly and terrain
classes tend to cluster. In this work, they also incorporated
infrared temperature and color information as additional
features.

Unfortunately, it is not always enough for safe naviga-
tion to be able to distinguish vegetation from other obsta-
cles, because there might be an obstacle hidden behind the
vegetation. This problem was addressed in a recent study,
in which UWB radar was used in parallel with LIDAR to
augment traversability maps in vegetated environments
(Ahtiainen et al., 2013, 2015). It was shown that because
the utilized UWB radars are capable of penetrating around
40 cm of vegetation, it is possible to generate accurate
traversability maps of densely vegetated environments such
that solid obstacles hidden behind dense vegetation can still
be detected. As in this work, we concentrate on traversabil-
ity classification based on LIDAR measurements alone; we
will treat very dense vegetation as nontraversable to avoid
problems with hidden obstacles. This constraint may be re-
laxed in future works by fusing our traversability results
with classifications based on the algorithms proposed in
Ahtiainen et al. (2013) and Ahtiainen et al. (2015).

3. NORMAL DISTRIBUTIONS TRANSFORM
TRAVERSABILITY MAPS (NDT-TM)

This section introduces the NDT-TM representation for
traversability evaluation. The NDT-TM extends the NDT-
OM (Saarinen et al., 2013b) for spatial modeling by adding
permeability and intensity distribution to the represen-
tation. Two novel SVM-based traversability classification

methods are presented that exploit the NDT-TM frame-
work.

3.1. Previous Work

The NDT-OM representation is a 3D spatial model based
on a regular grid that concurrently estimates both the
occupancy and the shape distribution in each cell. For-
mally, a cell ci in NDT-OM is represented with parameters
ci = {μi, Pi, Ni, p(mi |zi=1:t )}, where μi and Pi , are the param-
eters of the estimated Gaussian component, Ni is the num-
ber of points used in the estimation of normal distribution
parameters so far, and p(mi |zi=1:t ) is the probability of the
cell being occupied. The minimum amount of parameters
required to maintain an NDT-OM cell is 11 (mean, upper
diagonal of covariance, number of points, and occupancy
probability).

The only previous work on NDT-based traversability
mapping was introduced in Stoyanov et al. (2010), in which
the cell distributions N (μi, Pi) were exploited in estimating
the terrain traversability. This CTC method calculates the
roughness R and inclination θ of a cell ci , which are then
used for classifying the cells.

θ and R are calculated as in Magnusson (2009). First,
we calculate the eigenvectors ( �e0, �e1, �e2) and correspond-
ing eigenvalues (λ0, λ1, λ2) of the covariance matrix of the
Gaussian in ci , where λ0 ≤ λ1 ≤ λ2. The eigenvalues indi-
cate the variance of the Gaussian along the corresponding
eigenvectors and therefore can be used to determine the
shape of the Gaussian. The roughness R depends on the
smallest eigenvalue λ0: If λ0 is significantly smaller than the
other two eigenvalues, the Gaussian is approximately pla-
nar. Conversely, if λ0 is large, this indicates that there is a lot
of uncertainty along all principal directions and that no pla-
nar structure can be found. In other words, scattered points
suggest that the Gaussian is rough and needs to be consid-
ered nontraversable. Thus, we evaluate the roughness of a
cell based on the metric value of the smallest eigenvalue,
that is, R = λ0.

The inclination θ is calculated by computing the an-
gle between �e0 and the vertical surface normal �nv = (0, 0, 1)
using the dot product:

cos(θ ) = �e0 · �nv. (1)

For rough cells the direction of �e0 is arbitrary as there
are multiple possible planar fits to the data, and thus θ

might not correspond to the inclination angle. However,
with planar distributions, θ yields a good estimate of the
true inclination.

The CTC algorithm is presented in Algorithm 1. Cells
are classified as rough, horizontal, vertical, or inclined pla-
nar cells. All horizontal cells as well as the inclined cells
whose inclination angle does not exceed the maximum pitch
angle of the vehicle θmax are considered traversable. The re-
maining inclined cells, vertical cells, and rough cells are
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considered nontraversable. First, we check whether R is
greater than predefined threshold Rth. In this case, the cell
is labeled as rough (i.e., nontraversable). In case R ≤ Rth,
we proceed to check the inclination. In this step, the cell is
first classified as inclined. However, if θ is greater than pre-
defined threshold θv , the label is changed to vertical. On the
other hand, if θ is less than another threshold θh, the label is
changed to horizontal.

Algorithm 1. Constant threshold classification (CTC)
algorithm

1: if R > Rth then
2: Class ← ROUGH

3: else
4: Class ← INCLINED

5: if θ > θv then
6: Class ← V ERT ICAL

7: if θ < θh then
8: Class ← HORIZONT AL

3.2. NDT-TM Representation

The CTC algorithm was shown to perform well in struc-
tured environments, but it runs into trouble in more com-
plex areas, for example, among vegetation. Because of the
diversity of unstructured environments, the NDT-TM rep-
resentation incorporates additional features to enhance the
classification accuracy. These additional features are ex-
pected permeability, which captures the probability of a LI-
DAR ray passing through a cell distribution N (μi, Pi) rather
than reflecting back from it, and intensity distribution (mean
and variance), which gives information of the reflectivity of
a target. Permeability was selected because sparse vegeta-
tion reflects some of the laser beams back to the LIDAR,
but the rest pass through and may be reflected by back-
ground objects. Permeability is denoted with ρ. Intensity
was chosen since the NIR light emitted by most LIDARs
is strongly reflected from chlorophyll-rich vegetation. The
intensity of a N (μi, Pi) is modeled with a one-dimensional
normal distribution of all the measurements used to calcu-
late the N (μi, Pi). Therefore, intensity is represented by the
intensity mean μI and the intensity variance �I .

3.2.1. Intensity Distribution Mapping

An example of vegetation reflectivity can be seen in
Figure 3, in which the individual intensity measurements
of laser beams are plotted as a function of measured dis-
tance. The blue crosses represent measurement reflecting
back from vegetated surface, while the red circles denote
measurements from asphalt. Clearly, the intensities of the
measurements backscattered from the vegetation are sys-
tematically greater than those from asphalt. Note also that

Figure 3. The red circles and the blue crosses represent the
intensity of LIDAR measurement hitting asphalt and grass, re-
spectively, as a function of distance. The measurements origi-
nate from multiple cells.

the intensity of reflected light does not only depend on the
material of the measured surface but also varies slightly as
a function of distance. In addition, the incidence angle also
affects intensity measurements (Baribeau et al., 1992).

Although the intensity varies as a function of distance
and incidence angle, we have opted to model the intensity
of a cell with a one-dimensional normal distribution of all
the measurements hitting the cell. However, we have trun-
cated the maximum observation distance to 20 m, because
the intensity measurements tend to became more inaccurate
as the range increases. There are four reasons for this sim-
plified modeling decision. First, the individual cells are hit
by LIDAR measurements from all distances as the platform
moves, which evens out the effects caused by observation
distance variation. Second, there might be several different
materials on the cell distribution area, especially in unstruc-
tured environments, that influence the data. Thirdly, the
data of individual cells varies significantly from one en-
vironment to another, providing little justification for more
complex models. Fourthly, the normal distribution provides
a reasonable estimate of the intensity for real data from dif-
ferent environments (see Figure 4).

The intensity distribution requires storing of two addi-
tional values, the intensity mean μI and the intensity vari-
ance �I . These values are calculated with the recursive co-
variance method (RCS) (Saarinen et al., 2013b), which allows
combination of two arbitrary-sized sample sets.

3.2.2. Permeability Mapping

The laser rays passing through a cell distribution N (μi, Pi)
can be modeled as Bernoulli process; that is, the
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Figure 4. Histograms of the intensity measurements of a cell from different environments. The red line is a normal distribution
calculated from the data. (a) Asphalt. (b) Gravel. (c) Short grass. (d) Tall grass.

probability of each ray passing through N (μi, Pi) has a
Bernoulli distribution. The probability mass function of a
Bernoulli distribution is

Pi(k) = pk
i (1 − pi)1−k, k ∈ {0, 1}, (2)

where i refers to a particular cell, pi is the success proba-
bility of that cell, and k is the outcome parameter, that is,
k = 0 when a ray hits the distribution and k = 1 when a
ray passes through the distribution. We learn pi parame-
ters using Bayesian estimation with beta distribution prior,
which is the conjugate prior of a Bernoulli distribution. The
hyperparameters α and β are updated for each cell with

αn =
{
αn−1 + 1, if kn = 1
αn−1, if kn = 0

(3)

and

βn =
{
βn−1, if kn = 1
βn−1 + 1, if kn = 0,

(4)

where n is the number of laser rays hitting or passing
through the distribution. α and β correspond to the number
of misses Nm and the number of hits Nh, respectively. For
the estimation of the success probability pi , the expectation
of the beta distribution is used:

p̂i = E[pi] = α

α + β
. (5)

Finally, we get the Bernoulli distributed probability of
a laser ray hitting N (μi, Pi) by setting p̂ into (2) with k =
1. This probability is referred to as permeability, and it is
denoted with ρ for the rest of this paper. That is,

ρ = P (k = 1) = p̂1(1 − p̂)0 = p̂ = α

α + β
= Nm

Nm + Nh

. (6)

Equation (6) gives us a way to estimate the permeability
by counting the number of hits Nh and misses Nm for a
particular Gaussian N (μi, Pi). Figure 5 illustrates how the
hits and misses are calculated by pointing out the different
cases of a laser ray hitting or missing N (μi, Pi), namely:

� A-a) Miss: the ray passes through a Gaussian and hits a
different cell

Figure 5. An illustration of the different cases of a laser ray
passing through or hitting a Gaussian distribution.

� B-b) Hit: the measured point hits the Gaussian in the
same cell

� C-c) Hit: the measured point is statistically close enough
to the Gaussian in the same cell

� D-d) Miss: the ray passes through a Gaussian in the
same cell, but the measured point is not statistically close
enough

� E-e) No effect: the ray passes a Gaussian in a different
cell

� F-f) No effect: the ray does not pass through the Gaussian
in the same cell and the measured point is not statistically
close enough

Counting the hits and misses is based on calculating the
maximum likelihood along a line given a Gaussian distribu-
tion and the likelihood of the maximum likelihood point xml

being measured given the observation zi . Figure 6 illus-
trates how the maximum likelihood point along a line is
calculated. xml is the point along the line that maximizes the
likelihood of the point belonging to a particular Gaussian
distribution. Details on how to calculate this point can be
found from Saarinen et al. (2013b).

The candidate point xml is calculated for each cell that
has a Gaussian along the laser ray. These cells are found
by performing ray tracing from the sensor origin xs to the
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Figure 6. The maximum likelihood along a line from the sen-
sor to the measured point.

measured point zi . The likelihood of xml given the cell dis-
tribution is calculated as:

p(xml |N (μ, P )) ∼ exp

(
−1

2
(xml − μ)tP −1(xml − μ)

)
. (7)

In addition to (7), we need to consider the sensor noise.
We assume that the range of the sensor ro = ||zi − xs || can
be represented with a normal distribution along the line
from xs to zi such that ro = N (rt , σ

2
s ), where rt is the true

distance to an obstacle and σs represents the sensor noise.
Thus, the likelihood of xml being measured given the obser-
vation zi is:

p(xml |zi) ∼ exp
(

−1
2

||xml − zi ||2
σ 2

s

)
. (8)

Now, if the tested cell distribution is in a different cell
than zi (i.e., case A-a or E-e), we update Nm with:

Nm =
{
Nm + 1, if p(xml |N (μ, P )) ∗ (1 − p(xml |zi)) ≥ η

Nm, otherwise,

(9)

where η is a threshold parameter that can be used to adjust
the cutoff likelihood. In other words, we update Nm when
the (7) is large (i.e., it is likely that the ray passes through the
cell distribution) and the (8) is small (i.e., the observation is
not near the cell distribution). Because (9) depends on both
the (7) and (8), it is not straightforward to analytically select
optimal value for η. Therefore, we heuristically use a value
of 0.3, which is roughly equivalent to 1-σ error level of the
likelihood function, throughout our experiments.

When we are examining a cell distribution within the
same cell as the observation, we do the following. First, we
want to update the cell distribution with the new measure-
ment before performing the check because the shape of the
distribution might change significantly, especially if the cell
was just observed. This is performed with the RCS method.
Second, we need more careful analysis of the likelihoods to
cover all the cases in Figure 5.

Determining a hit (i.e., cases B-b and C-c) is similar to
(9), but in this case, we want the observation to be near the
cell distribution. That is, we update Nh with:

Nh =
{
Nh + 1, if p(xml |N (μ, P )) ∗ (p(xml |zi)) ≥ η

Nh, otherwise.
(10)

To update the misses (i.e., case D-d), we first need to
check that the ray passes through the cell distribution. This
is performed by first checking that the distance to xml is not
greater than the measured range, because in this case the
measurement cannot pass through the cell distribution. In
addition, we need to check that xml is likely to belong to the
cell distribution but is not within the sensor noise from the
measured point. In all other cases, the observation does not
hit nor travel through the cell distribution (i.e., case F-f). Nm

is updated with:

Nm =

⎧⎪⎨
⎪⎩

Nm + 1, if p(xml |N (μ,P )) ∗ (p(xml |zi)) < η

∧p(xml |N (μ,P )) ≥ η

Nm, otherwise.

(11)

3.3. Traversability Classification

Terrain traversability depends on the aforementioned fea-
tures, but it is not straightforward to determine the re-
lationship between these features and the traversability
class. Therefore, we exploit a well-known SVM frame-
work (Cortes & Vapnik, 1995) to learn the model behind
the data. Two different classification techniques for classify-
ing each cell are presented in this section. The first method
exploits the C-support vector classification (C-SVC) to es-
timate the distribution behind the data, based on training
samples from both classes. The second method is a hybrid
method called ACTC and it classifies the cells first by using
CTC algorithm and performs the C-SVC classification only
on the cells classified as nontraversable by the CTC method.
The SVM framework was chosen for traversability classifi-
cation because it has been shown to work well in similar
nonlinear, two-class classification problems (Gestel et al.,
2004).

Nonlinear classification is performed with the so-called
kernel trick, in which inputs are mapped into a higher-
dimensional space with a kernel function. In our case, a
Gaussian radial basis function (RBF) was selected for the
kernel function because it can handle nonlinear relations
and tends to perform well in cases in which there are only
few features (Hsu et al., 2010).

3.3.1 C-Support Vector Classifier (C-SVC)

To avoid tedious hand-labeling of the teaching data,
we have chosen a similar approach as in Thrun et al.
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Figure 7. An example of an NDT-OM map in which positive
training samples are marked with green and negative with red.
The positive samples correspond to the UGV footprint cells,
whereas the negative samples correspond to the cells above or
below the ground plane.

(2006) to automatically collect positive teaching samples by
recording the measurement platform footprint cells. Collect-
ing the negative samples is more problematic. Our insight
is that when we are operating on relatively flat terrain, all
the cells above or below the ground plane by some margin
can be labeled as negative samples. Clearly, not all of those
cells are nontraversable; however, even training against an
approximate labeling is enough to improve the overall per-
formance of the classifier. Naturally, applying this method
requires that the environment is mainly level and semicon-
trolled, such that areas above the ground plane are mostly
nontraversable. An example of such an environment can
be seen in Figure 7, in which the cells labeled using this
method capture the forbidden areas with acceptable accu-
racy. To train a robust classifier for versatile environments,
the training samples should also be collected on various
terrain types.

Learning the classification model from the training
samples is based on SVM that are kernel-based learning
methods for data classification and regression problems.
SVMs learn a hyperplane in a higher-dimensional feature
space, which separates the two classes of data points, max-
imizing the margin between training points and the hy-
perplane. However, the C-SVC formulation of the SVM in-
troduces a soft margin that adjusts the trade-off between
maximizing the margin and minimizing the training error.
Given training vectors xi ∈ R

l , i = 1, . . . , l, in two classes
and class label vector y ∈ R

l such that yi ∈ [1, −1], C-SVC
solves the following dual problem:

min
α

1
2
αT Qα − eT α

subject to yT α = 0,

0 ≤ αi ≤ C, i = 1, . . . , l, (12)

where C is a regularization parameter, e = [1, . . . , 1]T is a
vector of ones, Q is an l by l positive semidefinite matrix,
and Qij ≡ yiyjK(xi , x j ), where K(xi , xj ) is the kernel func-
tion. We use the RBF kernel function, which is defined as
K(xi , xj ) = exp (−γ ‖xi − xj‖2), γ > 0 , where xi ∈ R

n, i =
1, . . . , l, is training vector and γ is kernel parameter. The
following decision function is used to predict the class
labels:

y = sgn

(
l∑

i=1

yiαiK(xi , x) + b

)
, (13)

where b is the bias term (Hsu et al., 2010).
The free parameters in training the C-SVC with RBF

kernel are C, which trades off misclassification of training
samples against simplicity of the decision surface, and γ ,
which defines how far the influence of a single training
sample reaches. When C is low, the margins of the sup-
port vectors are small, which might cause overfitting. With
small γ , the influence of the training samples ranges far.
Parameter selection can be done by cross validation, which
prevents the overfitting problem. A grid-search method can
be used for picking the parameters. First, a coarse grid-
search should be performed, because model training with
large data sets can be time consuming. After identifying
the region of parameters in which the classification results
seem reasonable, a finer grid-search is conducted for that
region. However, with noisy training and testing set, the
prediction accuracy is not always the only thing to take
into account. Therefore, the best model should be selected
based on how the trained model performs in real-world
situations.

3.3.2 Augmented Constant Threshold Classifier (ACTC)

The CTC algorithm is shown to work well in structured and
semistructured environments (Stoyanov et al., 2010). There-
fore, the overall prediction accuracy could be improved by
first classifying the cells with the CTC algorithm and using
the C-SVC classification only for cells that have been classi-
fied as nontraversable. This prevents the potential misclas-
sification of traversable cells. Moreover, using this hybrid
method also decreases the computational complexity of the
classification compared to the C-SVC method. However,
because we are only interested in classifying the cells as
traversable or nontraversable (as opposed to rough, hori-
zontal, vertical, or inclined), we do not need to perform all
the steps of the CTC method. First, we check whether a
cell is rough and perform C-SVC classification for the cell
in case this condition is met. If the first check is passed, we
proceed to check whether the inclination angle θ exceeds the
maximum allowed pitch angle θmax of the vehicle and per-
form C-SVC classification in case the inclination exceeds the
threshold. The rest of the cells are classified as traversable
because they are determined to be smooth (¬rough) and the
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inclination is within acceptable limits. The ACTC algorithm
is described in Algorithm 2.

Algorithm 2. Augmented constant threshold classifier
(ACTC)

1: if R > Rth then
2: Class ← C-SVC(R, θ, ρ, μI , �I )
3: else if θ > θmax then
4: Class ← C-SVC(R, θ, ρ, μI , �I )
5: else
6: Class ← T RAV ERSABLE

4. SYSTEM DESCRIPTION

This section presents the experimental systems used for val-
idation of the proposed approach and discusses some im-
plementation details.

4.1. Measurement Platforms

Two different measurement platforms were used in our ex-
periments. The first one is a fully electric all-terrain vehicle
(ATV) Polaris Ranger Ev 4x4 equipped with a Velodyne
HDL-32E high-definition LIDAR, which can be seen on the
roof of the measurement platform in Figure 1. The sensor
has 32 laser/detector pairs aligned vertically such that the
vertical FOV is 41.3◦ (+10.67◦ to −30.67◦). The sensor spins
at 10 Hz giving it horizontal FOV of 360◦, generating ap-
proximately 700 000 data points per second. The sensor is
mounted on the top of the vehicle such that the origin of the
LIDAR is at the height of 2.38 m.

The other measurement platform is an all-terrain
Husky A-200 robot equipped with different sensing modal-
ities for robot localization and environmental monitoring
(see Figure 2(a)) (Bennetts et al., 2014). However, in this
work, only the 3D LIDAR (Velodyne HDL-32E) mounted
on a pole on top of the vehicle at the height of 0.9 m was
exploited.

4.2. Implementation

The localization data of the platform was estimated us-
ing the iterative closest point (ICP) algorithm. We used
the ethzasl_icp_mapper implementation that is available in
ROS (Pomerleau et al., 2013). Only LIDAR data were used
as an input for the algorithm. The NDT-OM maps are gen-
erated using the ROS packages of Applied Autonomous
Sensor Systems (AASS) laboratory at Örebro University in
Sweden (Saarinen et al., 2013b). However, we made some
modification in the source code, in order to compute the in-
tensity distributions and the permeability of each Gaussian,
as well as to perform SVM prediction with the pretrained

model. A widely used library libSVM (Chang & Lin, 2011)
was exploited in the learning and prediction steps.

It is very important to scale the parameters before train-
ing the SVM. Scaling prevents the attributes in greater nu-
meric ranges from dominating the smaller ones and helps
in avoiding numeric instabilities. We scaled each attribute
linearly to the range [0, 1]. Exactly the same scaling pa-
rameters need to be used to scale both the training and the
testing data, which means that the scaled testing data may
be slightly out of the range [0, 1]. The scaling parameters
are calculated before training the model and used with the
trained model in the prediction phase.

5. EXPERIMENTS

This section presents results of the experiments performed
to validate the proposed approach. Subsection 5.1 illustrates
the effect of vegetation on the selected features in the NDT-
TM framework and analyses the effects of the map reso-
lution. Subsection 5.2 demonstrates the performance of the
proposed traversability classification methods in five differ-
ent field trials, compared against previous work within the
NDT framework.

5.1. Vegetation and the Features

First, we tested how the selected features behave in the pres-
ence of vegetation. Four different types of vegetation were
placed progressively in front of the measurement platform
on a gravel surface, and the platform was driven approxi-
mately 10 m toward the target. The movement enabled the
generation of NDT-TM maps from the data. The vegetation
types are presented in Figure 8 and referred to from now
on as Vege1 to Vege4. Vege1 has fairly large waxy leaves and
a woody stem. Vege2 has a woody stem as well, but there
are more branches, and the leaves are smaller and thin-
ner. Vege3 is herbaceous with seed heads and long tapering
leaves. Vege4 is herbaceous with small, dark green pinnate
leaves.

The vegetation was placed on the field layer by layer,
such that one layer consisted of two pieces of a particular
vegetation placed side by side with 20 cm between them. A
new layer was always placed 10 cm in front of the old one.
Figures 8(a)–8(d) illustrate the placing of vegetation. Each
layer of vegetation added more than 30 g of foliage. The
stem weights of the woody stemmed vegetation (i.e., Vege1
and Vege2) were around 20 g per layer.

The following bar diagrams in Figures 9, 10, and 11
illustrate how the selected features behave in the pres-
ence of vegetation and obstacles. All the values in the
figures are mean values of the cells covering the obstacle
area. Obviously, when the cell size increases, a lower num-
ber of cells are affected by the obstacles. Furthermore, it
should be noted that, depending on the resolution, the cell
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Figure 8. (a) Two layers of Vege1 with a fairly large rock behind the vegetation. (b) One layer of Vege2. (c) Four layers of Vege3. (d)
Three layers of Vege4.

Figure 9. Bar diagrams of (a) intensity mean, (b) intensity variance, and (c) expected permeability using different cell resolutions
with variable amount of vegetation (Vege1).

Figure 10. Bar diagrams of (a) intensity mean, (b) intensity variance, and (c) permeability of different vegetation types (Vege1-Vege4)
with variable amount of vegetation.

distributions may capture only partially the vegetation and
partially the ground plane.

The most important parameter of the NDT-OM algo-
rithm is the resolution of the grid used for mapping. As
demonstrated in Saarinen et al. (2013a), even with very
large resolution it is possible to obtain reasonable local-
ization results using NDT maps. However, when analyz-

ing traversability, it is beneficial that the distributions cap-
ture the geometry of the obstacles accurately, which sets a
lower limit on the resolution. The bar diagrams in Figure 9
illustrate the effect of the resolution for the intensity distri-
bution and permeability of vegetation using Vege1. The bars
in the figures correspond to the intensity mean μI (Figure
9(a)), intensity variance �I (Figure 9(b)), and permeability
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Figure 11. Bar diagrams illustrating (a) intensity mean, (b) intensity variance, and (c) permeability with and without an obstacle
behind a variable amount of vegetation (Vege1).

ρ (Figure 9(c)), respectively. Bars of different colors indicate
different map resolutions.

Generally, μI decreases as the cell size increases, be-
cause large cells cover more of the ground plane rather
than just vegetation. Furthermore, the intensity increases
along with the amount of vegetation present. �I does not
follow such a clear pattern. However, from Figure 9(b), it
is evident that the variance of the ground plane is small,
which decreases �I in the cases for which the distributions
also partially capture the ground plane. Interestingly, the
difference between the mean values of vegetation and the
ground plane is relatively small, but the vegetation seems
to increase the intensity variance significantly. This results
mainly from the LIDAR rays hitting different parts of the
vegetation that have different reflectance properties. That
is, the LIDAR rays backscatter strongly from the leaves,
whereas the round stems tend to attenuate the measure-
ments. In addition, some of the measurements originate
from the ground plane, which further adds to the intensity
variance.

The permeability parameter ρ decreases as a function
of the resolution, because the distributions capture more of
the ground plane (i.e., become flatter) when the cell size
increases and the laser beams no longer pass through them
that easily. The increase in the amount of vegetation also
decreases ρ, because thick vegetation is no longer penetrable
for the laser beams.

On the basis of the Figure 9, we chose the resolution to
be 0.4 m, which still captures nicely the geometry of even
small objects while still allowing real-time update rates
of the NDT-OM map (Saarinen et al., 2013b). Especially,
the permeability is quickly affected with larger resolutions,
which affects the classification of sparse vegetation signifi-
cantly. For the experiments reported in the rest of this article,
the resolution of all the NDT maps was set to 0.4 m.

Figure 10 illustrates the effect of different vegetation
types on the selected features. Notably, due to its dark green

and small leaves Vege4 results in the lowest μI and gener-
ally smaller values of �I . On the other hand, due to the
small leaves, ρ is notably larger than for Vege2 and Vege3.
Nonetheless, the large but relatively sparse leaves of Vege1
result in similar ρ as for Vege4.

Unfortunately, it is not enough for safe navigation to be
able to distinguish vegetation from other obstacles, because
there might be an obstacle hidden behind the vegetation.
Figure 11 depicts how the selected features behave if there
is a large rock behind the vegetation. The vegetation used
in this experiment was Vege1 and the rock can be seen in
Figure 8(a) behind the vegetation.

The behavior of ρ parameter in this figure is especially
interesting. There are clear differences between the values
with and without the rock, up until three layers of vegeta-
tion. After this point, the values became too similar to make
accurate distinctions between the two cases. Furthermore,
there are clear differences also in the intensity distributions
up until three layers of vegetation. Overall, as expected, the
evidence supports that detecting an obstacle behind veg-
etation based only on LIDAR data can be done as long as
parts of the obstacle are still visible. In this experiment, if the
obstacle is hidden by more than three layers of vegetation,
it is no longer clearly visible and cannot be detected using
only the LIDAR data.

5.2. Application: Field Trials

To validate the classification performance of the proposed
algorithms, four field trials were conducted in controlled en-
vironments on different surfaces using the Polaris Ranger
as a measurement platform. Trial 1 was performed on as-
phalt, Trial 2 on gravel, Trial 3 on a field with sparse grass,
and Trial 4 on a densely vegetated field with obstacles.
Photographs of the environments are shown in Figure 12,
while the corresponding NDT-OM maps and vehicle trajec-
tories are shown in Figure 13. Moreover, we performed an
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Figure 12. Photographs of the different field trial environments: (a) asphalt, (b) gravel, (c) sparse vegetation, and (d) dense
vegetation.

Figure 13. NDT-OM maps of the field trial areas colored by height. The red dotted lines on the maps represent the sensor
trajectories.

additional experiment (Trial 5) in a forest environment
without ground truth information using the Husky-A200
measurement platform. A photograph from the forest en-
vironment is shown in Figure 2(a). Table I presents illus-

trative information about the performed trials. For all the
experiments, the classification was performed offline on
collected data and using the free parameters presented in
Table II.
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Table I. Field trials in numbers.

Trajectory length Duration Average speed Area size Number of cells

Trial 1: Asphalt 127 m 121 s 1.0 m/s 100 × 30 m2 29 176
Trial 2: Gravel 280 m 230 s 1.2 m/s 100 × 100 m2 48 898
Trial 3: Sparse grass 186 m 126 s 1.5 m/s 90 × 60 m2 19 737
Trial 4: Dense grass 1274 m 918 s 1.4 m/s 165 × 70 m2 100 887
Trial 5: Forest 172 m 299 s 0.6 m/s 60 × 50 m2 44 916

Table II. The free parameters and their values used in the field
trials.

Resolution Rth θh θmax θv γ C η

0.4 0.005 10◦ 30◦ 80◦ 0.0625 0.125 0.3

We compared the two proposed SVM-based classifi-
cation methods, that is, the C-support vector classification
(C-SVC) and the ACTC, against the CTC algorithm. The
classification performance is measured in the following way.
First, we run the classification algorithms on the robot foot-
print points, and we use this as the ground truth to compute
recall ratios shown in Table IV. The recall is defined as the
ratio of true positives over the sum of true positive and false
negative samples. True positive and false negative samples are
the cells on the footprint that were classified, respectively,
as traversable/nontraversable.

However, this evaluation does not take the obstacles
in the area into account. Therefore, we have hand-labeled
obstacles from the data, which enables also the computation
of precision and f-score statistics. By precision, we mean the
ratio of true positives over the sum of true positives and false
positives. The f-score is computed as twice the product of
precision and recall over the sum of precision and recall.

Unfortunately, it is not feasible to label each cell in-
dividually due to the vast number of cells. Moreover, it
would be extremely challenging to determine the true class
of some of the cells even for a human expert. Thus, we
have hand-labeled the areas that we know should not be

traversed. This, however, means that the labeled areas in-
clude also some traversable cells, which has a significant
effect on the classification measures. To illustrate the prob-
lem of evaluating traversability directly on the classification
results for the NDT cells in 3D, imagine two areas of flat
traversable ground, separated by a nontraversable ditch.
Though each area is traversable in isolation, only one of
them is reachable for the robot at any given time. In a similar
manner, there may be locally traversable cells in the midst
of nontraversable areas. Therefore, in addition to the values
calculated based on the classified NDT-TM map, we also
compute the recall, precision and f-score for connectivity maps
extracted from the NDT-TM.

We define a connectivity map as the set of all reach-
able traversable cells from a given known robot posi-
tion. As the test environments used in this article do not
feature any drivable overpasses, connectivity maps can be
efficiently represented as a 2D projection of the drivable
3D terrain. We compute connectivity maps from the NDT-
TM by wavefront propagation in 3D, similar to prior work
(Stoyanov et al., 2010). For each cell in the wavefront, we
find the traversable neighbors and add them if no over-
hanging obstacles would cause collisions and if the mean-
to-mean slope is below a vehicle-dependent maximum step
threshold (see Figure 14(b) for an example). For example, in
Figure 14, a deciduous tree is highlighted with a black rect-
angle in the NDT-TM and connectivity map. Because the
maps are shown from above, the tree seems to be a large ob-
stacle in the NDT-TM, but in the connectivity map, only the
tree trunk is classified as nontraversable because the leaves

Figure 14. (a) NDT-TM map from Trial 1 classified with CTC method (red means nontraversable). (b) The corresponding con-
nectivity map (white region is traversable). The black rectangles highlight a deciduous tree from the maps. On the connectivity
map, only the tree trunk is classified as nontraversable because the leaves are above the vehicle height. The size of the test area is
100 × 30 m2. The corresponding maps classified with the C-SVC and ACTC are nearly identical.
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Table III. Classification times.

Total (s)/per cell (10−3 s)

CTC C-SVC ACTC

Trial 1: Asphalt 0.0131/0.0005 21.42/0.7342 11.65/0.3993 (54.34%)
Trial 2: Gravel 0.0388/0.0008 35.92/0.7346 20.07/0.4105 (55.78%)
Trial 3: Sparse grass 0.0206/0.0010 14.52/0.7357 3.52/0.1784 (24.18%)
Trial 4: Dense Grass 0.0479/0.0005 74.09/0.7344 22.23/0.2204 (29.90%)
Forest: 0.0212/0.0005 32.77/0.7296 19.93/0.4437 (61.17%)

Table IV. Traversability classification results.

Cell map Connectivity map

Precision Recall f-score Precision Recall f-score

Trial 1: Asphalt
CTC 0.8609 0.9994 0.9250 0.9703 0.9983 0.9841
C-SVC 0.8187 0.9994 0.9001 0.9691 0.9983 0.9835
ACTC 0.8170 0.9994 0.8990 0.9691 0.9983 0.9835

Trial 2: Gravel
CTC 0.8248 0.9733 0.8929 0.8709 0.9784 0.9215
C-SVC 0.8170 0.9938 0.8968 0.8525 0.9953 0.9184
ACTC 0.8076 0.9949 0.8915 0.8476 0.9979 0.9166

Trial 3: Sparse grass
CTC 0.9427 0.9373 0.9400 0.9810 0.9017 0.9397
C-SVC 0.9481 0.9696 0.9587 0.9787 0.9490 0.9636
ACTC 0.9422 0.9702 0.9560 0.9735 0.9502 0.9617

Trial 4: Dense grass
CTC 0.9486 0.7961 0.8657 0.9755 0.6175 0.7563
C-SVC 0.9405 0.8417 0.8884 0.9855 0.6977 0.8170
ACTC 0.9383 0.8516 0.8929 0.9822 0.7113 0.8250

are above the vehicle height. Connectivity maps can be di-
rectly used as a costmap input to classical path-planning
algorithms, because they already reduce the dimensional-
ity from 3D to 2D by taking the vehicle constraints into
consideration. Finally, connectivity maps are ideally suited
for evaluating the performance of the algorithms proposed
in this paper, as they capture better the concept of driv-
ability used by human operators and filter out any un-
reachable locally traversable patches. The recall, precision,
and f-score values for all the data sets are shown in Ta-
ble IV. In the table, the best results for each experiment
(i.e., highest precision, recall, and f-score) are shown in bold
font. The same numbers cannot be computed for Trial 5 be-
cause obtaining labeled ground truth in this trial was not
feasible.

The classification times for the experiments are re-
ported in Table III, specifying both the total time of classify-
ing the whole map as well as the average time of classifying
individual cells. The percentages inside parenthesis in the
ACTC column are the percentages of cells classified using

the C-SVC method. For the reported classification times, we
run the experiments on an Intel Xeon E3-1230 V2 processor
at 3.30 GHz, with 16 GB of RAM, running Ubuntu 12.04
32 bits.

Table IV shows that the CTC algorithm is marginally
better than the two proposed classification approaches in
Trial 1, but the differences are insignificant. That is, all the
approaches perform robustly on asphalt. The lower preci-
sions of C-SVC and ACTC classification are mainly due to
inaccuracies in the hand-labeling of obstacles. This is as ex-
pected, because we hand-labeled areas that should not be
traversed, not individual cells. Therefore, there are some
traversable cells within these areas and the different meth-
ods classify them differently. However, the connectivity
maps mitigate this problem and the precisions are around
the same order of magnitude. The NDT-TM map and the
corresponding connectivity map from Trial 1 classified with
the CTC algorithm are shown in Figure 14.

In Trial 2, the precision is again higher with CTC
than with C-SVC or ACTC (see Table IV). However, the
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Figure 15. The NDT-TM maps from Trial 2 (red means nontraversable). The black rectangles in the figures highlight the areas where
the classification methods perform differently due to minor irregularities on the terrain. The size of the test area is 100 × 100 m2.

Figure 16. The NDT-TM maps from Trial 3 classified with CTC and ACTC method (red means nontraversable). The black
rectangles highlight an area of tall vegetation with significant differences in the classification results. The size of the test area is
90 × 60 m2.

differences remain minor and are mainly due to the approx-
imate labeling of the obstacles. Nonetheless, the advantage
of the SVM-based methods is already clear when looking at
the recall values (i.e., correctly classified traversable cells),
which are significantly better than with CTC, even though
the ground plane is relatively smooth. Note that there are
no hand-labeling-related inaccuracies present in the recall
values because the labeling was done based on the robot
footprint.

The advantage of SVM-based classification methods
is further illustrated in Figure 15 in which differences in
the NDT-TM maps are highlighted in the figures. The CTC
method misclassifies cells in the area of the larger black
rectangle due to small irregularities on the ground, whereas
the SVM-based methods are able to classify that area cor-
rectly. However, the smaller black rectangle highlights the
advantage of the ACTC method because the C-SVC method
misclassifies few cells on that area, whereas the CTC and
ACTC classify them correctly. Overall, the ACTC performs
best in Trial 2, which can be seen as the highest recall value
in Table IV.

Trial 3 was performed in a sparsely vegetated environ-
ment where the SVM-based methods clearly outperform the

CTC method as expected (see Table IV). The precisions are
again similar with all the methods, but the recall values are
significantly higher than the SVM-based methods, which
yields also superior f-scores. In this environment, there are
no significant differences between the C-SVC and ACTC
methods. Figure 16 illustrates the differences between clas-
sification results of CTC and ACTC method in Trial 3. The
black rectangle highlights an area of tall vegetation shown
on the right-hand side of Figure 12(c) with significant dif-
ferences between the classification results.

Trial 4 was performed in a densely vegetated environ-
ment. Table IV illustrates that the precision values are similar
for all the methods, but the recall values of the SVM-based
methods show substantial improvement in classification ac-
curacy. Hence, also the f-scores are significantly higher for
the SVM-based methods. The ACTC method performs best
also in this experiment.

To further evaluate the capability of detecting true ob-
stacles within the vegetated field, we placed five different
obstacles in known locations on the field in Trial 4, that is,
two large rocks and three logs of wood. Images of these ob-
stacles can be seen in Figure 17. The locations of these obsta-
cles are marked in the NDT-TM maps in Figure 18. All the
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Figure 17. Photographs of the obstacles placed on the field in Trial 4.

Figure 18. NDT-TM maps from Trial 4 classified with CTC and ACTC. The locations of the obstacles are marked into the maps.
The size of the test area is around 165 × 70 m2.

obstacles were correctly classified as nontraversable with
all the classification methods. When selecting the model
parameters, detecting obstacles needs to be the priority,
because the obstacles might damage the vehicle. Unfortu-
nately, because we rely on permeability in classification,
only penetrable vegetation can be correctly classified as
traversable. Therefore, in Trial 4, several parts of the en-
vironment are classified as nontraversable due to impene-
trable vegetation even though in reality traversing through

those areas would be possible without damaging the vehi-
cle. Nonetheless, it was shown that the proposed methods
perform robustly in different types of environments and im-
prove the classification accuracy significantly in vegetated
environments.

The last field trial was performed in a forest envi-
ronment with sparse grass as well as multiple coniferous
and deciduous trees spread across the environment. Be-
cause Trial 5 was performed with a different measurement
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Figure 19. Top-down view of the resulting maps from the forest experiment. The size of the test area is 60 × 50 m2. (a) NDT-OM
map of the forest environment color coded based on height. The white dotted line illustrates the trajectory of the measurement
platform. (b) NDT-TM of the forest environment classified with the CTC method. (c) NDT-TM map classified with the ACTC
method. The black circles mark locations of tree trunks along the measurement platform trajectory. The black rectangles highlight
areas where sparse vegetation is misclassified with the CTC method, whereas the ACTC methods is able to correctly classify the
area as traversable. The NDT-TM maps are truncated to present only cells lower than the sensor height for clarity.

platform and no data from forest environments were used to
train our model, this experiment illustrates that the trained
model generalizes well to different environments. Fig-
ure 19 shows top-down views of maps generated from the
environment. From left to right, the maps are NDT-OM
colorized by height, NDT-TM classified with CTC, and
NDT-TM classified with ACTC. To make the visualization
of the NDT-TMs more clear, no cells above the sensor level
are visualized. The white dotted line in the NDT-OM illus-
trates the vehicle trajectory during the data gathering, and
the black circles in the NDT-TM maps mark locations of
tree trunks along the trajectory. The black rectangles high-
light areas with tall grass wherein the classification methods
perform differently.

Both the CTC and ACTC methods correctly classified
all tree trunks as nontraversable. However, some areas with
tall grass are misclassified with the CTC, whereas the ACTC
was able to correctly classify the whole area. That is, using
the ACTC method for classification enables safe path plan-
ning in the forest environment with tall grass. Most of the
nontraversable areas in the maps near tree trunks originate
from low-hanging tree branches that should not be consid-
ered traversable because the branches might hit and damage
the sensor.

6. CONCLUSIONS AND DISCUSSION

This article presented the NDT-TM representation for
traversability evaluation. Two novel 3D terrain classifica-
tion methods based on the NDT-TM representation in out-
door environments were proposed and demonstrated to
outperform previous work on traversability analysis using
NDT representation. The NDT-TM extends NDT-OM by
adding an intensity distribution and expected permeability
as additional features for each cell in the representation.

Classification is performed that exploits an SVM frame-
work, using the roughness and slope of each cell distri-
bution in addition to the intensity mean, intensity variance,
and permeability as features. The first algorithm uses C-
SVC, wherein positive teaching samples are gathered from
the robot footprints and the negative samples automatically
from semicontrolled environments. The second approach is
a hybrid method combining the advantages of both CTC
and C-SVC by applying the more complex C-SVC classifica-
tion only to cells that are at first classified as nontraversable
with CTC.

To avoid the approximative automatic collection of neg-
ative samples, we performed preliminary experiments also
with one-class SVM algorithm (Schölkopf et al., 2001) in
which only positive samples are used for training the model.
However, tuning one-class SVM is difficult if no labeled
data are available from both classes. Therefore, we trained
a one-class SVM using an RBF kernel function, selecting the
parameters similarly as with the C-SVC approach, that is,
by running cross validation on the same validation data.
Nonetheless, even the models tuned using validation data
with labeled samples from both classes performed systemat-
ically significantly worse than the two-class models. Further
investigation into one-class classifiers is left as one direction
of future work.

We presented a detailed study of the features of LI-
DAR data and NDT cells in the presence of vegetation. One
key finding is that even though NDT-OM allows low res-
olution without compromising model accuracy, it is bene-
ficial to keep the voxel size relatively small to capture the
real dimensions and properties of the environment in order
to classify vegetated environments correctly. However, sig-
nificantly lower resolution than in previous work can still
be used. Nonetheless, adapting a multiresolution grid as
the frame of the NDT-TM approach as in Stoyanov et al.
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(2010) would further decrease the computational complex-
ity. Another important conclusion is that by exploiting the
permeability and intensity distribution, it is possible to dis-
tinguish vegetation from solid obstacles. However, it was
found that with LIDAR-only approach at least parts of the
obstacle need to be clearly visible in order to do the dis-
tinction. Therefore, the proposed classification approaches
were trained such that only sparse vegetation is classified
as traversable.

Furthermore, we demonstrated that adding the inten-
sity distribution and the permeability as features increases
the accuracy of classification in complex vegetated envi-
ronments. Although the densely vegetated environment in
Trial 4 proved to be challenging for the proposed classifica-
tion methods, the results demonstrate that the methods sig-
nificantly improve the classification accuracy even though
safe navigation on this environment based only on LIDAR
data is not feasible. In our experiments, there were no sig-
nificant differences in classification accuracy between the
two proposed classification methods. However, the ACTC
method decreases the classification times significantly and
adds robustness to the classification by performing CTC-
based classification in structured environments.

The computational efficiency of our approach could be
further improved by utilizing a multiresolution framework
as a basis of the NDT-TM mapping, which would allow rea-
sonably small resolution for classifying sparse vegetation in
places of interest and large grid size in areas with little or
no data. However, this is left as future work. Moreover, the
NDT-TM provides a solid foundation for traversability clas-
sification that could be further improved by adding other
sensor modalities. For example, UWB radar measurements
— that have been shown to penetrate vegetation — could
be incorporated into the representation, which could en-
able safe navigation performance even in densely vegetated
environments.
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