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Two-dimensional local graph embedding discriminant analysis (2DLGEDA) and two-dimensional
discriminant locality preserving projections (2DDLPP) were recently proposed to directly extract features
form 2D face matrices to improve the performance of two-dimensional locality preserving projections
(2DLPP). But all of them require a high computational cost and the learned transform matrices lack
intuitive and semantic interpretations. In this paper, we propose a novel method called sparse two-
dimensional locality discriminant projections (S2DLDP), which is a sparse extension of graph-based
image feature extraction method. S2DLDP combines the spectral analysis and L;-norm regression using
the Elastic Net to learn the sparse projections. Differing from the existing 2D methods such as 2DLPP,
2DDLP and 2DLGEDA, S2DLDP can learn the sparse 2D face profile subspaces (also called sparsefaces),
which give an intuitive, semantic and interpretable feature subspace for face representation. We point out
that using S2DLDP for face feature extraction is, in essence, to project the 2D face images on the semantic
face profile subspaces, on which face recognition is also performed. Experiments on Yale, ORL and AR face
databases show the efficiency and effectiveness of S2DLDP.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Techniques for feature extraction in supervised or unsupervised
learning tasks have attracted much attention in computer vision
and pattern recognition [1]. Due to the wide applications of
appearance-based image recognition, many methods have been
developed over the past few decades. In some applications such as
face recognition and palmprint recognition, 2D images are usually
transformed into 1D vectors through column by column or row by
row concatenation. The resulting 1D image vectors of faces or
palmprints usually lead to a high dimensional image vector space.
Therefore, it is necessary for us to perform dimensionality reduc-
tion on the high dimensional data and obtain a compact repre-
sentation of the data. Two of the most fundamental linear
dimensionality reduction methods are principal component ana-
lysis (PCA) [2] and linear discriminant analysis (LDA) [3]. PCA is an
unsupervised learning method which aims to preserve total
variances by maximizing the trace of feature covariance matrix.
As a supervised learning algorithm, LDA aims to preserve the
discriminant information maximizing between-class scatter and
minimizing the within-class scatter simultaneously. Since the
dimensions of 1-D vectors of the patterns are usually very high,
a large computational cost involved in a big dense matrix eigen-
decomposition is unavoidable when PCA and LDA are used for
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dimensionality reduction. Moreover, an intrinsic limitation of
traditional LDA is that it fails to work when the within-class scatter
matrix becomes singular, which is known as the small sample size
(SSS) problem. In order to enhance the performance for classifica-
tion, a number of variant PCA-based and LDA-based algorithms,
such as probabilistic-based PCA [4,5], probabilistic linear discri-
minant analysis [6], geometric mean and harmonic mean based
subspsace learning methods [7-9], discriminative common vectors
[10], etc., were proposed in recent years.

Comparing with traditional PCA and LDA, two dimensional
principal component analysis (2DPCA)[11] extracts image features
directly from 2D image matrices rather than 1D vectors so that the
image matrices do not need to be transformed into vectors. An
image covariance matrix is directly constructed from the original
image matrices for feature extraction. The optimal projection axes
are its orthogonal eigenvectors corresponding to its larger eigen-
values. Due to the smaller size of the image variance matrix than
the classical covariance matrix, 2DPCA requires less time to extract
image features and achieves a better recognition rate. However,
2DPCA is suitable for data representation but not for classification.
Therefore, Li and Yuan [12] extended the idea of using image
matrices for LDA and presented 2DLDA for 2D face recognition. As a
result, the SSS problem in LDA is naturally solved since the 2D
within-class scatter matrix is nonsingular. There are some other
image-based methods such as [13,14] designed for avoiding
singularity of the within-class scatter matrix in LDA. In addition,
arepresentatively extension of image-based method is the bilinear
2DLDA proposed in [15] using iteration algorithm to obtain the
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optimal projections. Motivated by the successes of the bilinear
2DLDA for face recognition, Tao et al. [16] developed a general
tensor discriminant analysis for gait recognition.

However, PCA, LDA and their 2D versions fail to discover and
preserve the local information. A number of linear dimensionality
reduction techniques have been developed to address this problem.
Recently, He et al. [17,18] proposed a linear method named locality
preserving projections (LPP) to approximate the eigenfunctions of
the Laplace Beltrami operator on the manifold. LPP preserves the
local manifold structure modeled by a nearest neighbor graph of
the patterns so that the learned subspace preserves local informa-
tion. This idea was further extended and a general framework of
graph embedding was proposed in [19] for dimensionality reduc-
tion. Based on the idea of local patch alignment, a systematic
framework was developed in [20] for understanding the common
properties and intrinsic difference in different manifold learning
algorithms. However, those vertor-based methods usually encoun-
ter SSS problems and cannot be implemented directly because of
the singularity of matrix.

Motivated by the 2DPCA and 2DLDA, which operate directly on
2D image matrices, two-dimensional locality preserving projection
(2DLPP) [21-23] was proposed for face feature extraction. More
recently, some variant versions of 2DLPP such as graph-based
2DLGEDA [25], two dimensional discriminant locality preserving
projection (2DDLPP) [24] and its variation [26] were also proposed
to improve the performance of the 2DLPP. However, there still exist
some problems in 2DLPP-based methods, including 2DLGEDA and
2DDLPP. Firstly, the computational cost of 2DLPP-based methods is
high because it involves dense matrix eigen-decomposition and
operations on Kronecker products of matrices. Secondly, although
2D-based methods learn from face images, they can not learn the
face-like semantic transformation matrices similar to Eigenfaces
(PCA), Fisherfaces (LDA) and Laplacianfaces [18].

From the aspect of understanding the extracted features in a
low-dimensional subspace, one of the common major disadvan-
tages of all the linear methods mentioned above is that the learned
projection axes are linear combinations of all the original features,
hence the projection axes are often hard to give physical inter-
pretations to the extracted features. In order to interpret the
physical meaning hiding in the learned projection axes, there
has been great interest in sparse subspace learning in recent years.
Zouetal.[27] proposed sparse PCA (SPCA) using the Elastic Net [28]
for Li-penalized regression on regular principle components and
least angle regression [29]. d’Aspremont et al. [30] relaxed the hard
cardinality constraint and obtained a convex approximation using
semi-definite programming. Moghaddam et al. [31,32] proposed a
spectral bounds framework for sparse subspace learning. Particu-
larly, they proposed both exact and greedy algorithms for sparse
PCA and sparse LDA. There are also related works on SPCA such as
[33,34] via regularized low rank matrix approximation. Recently,
Cai et al [35,36] proposed a unified sparse subspace learning (USSL)
with spectral regression for special weighted/affined matrices. In
order to give a reasonable interpretation to the extracted features,
the existing sparse feature extraction methods such as SPCA, SLDA
and USSL have to directly operate on the high dimensional vectors.
As aresult, two disadvantages are encountered. First, the processes
of learning sparse projections are rather time-consuming when the
dimensions of the features are very high. Second, when the sparse
subspace learning algorithms are used in some special applications
such as face recognition and palmprint recognition, 2D images are
usually reshaped into high dimensional vectors, and thus some
useful structural information embedded in the original 2D images
may be lost.

Motivated by the image-based 2D feature extraction methods
and sparse subspace learning algorithms, in this paper, based on
2DLGEDA, we propose a novel sparse subspace learning framework

called sparse two-dimensional locality discriminant projections
(S2DLDP) for two-dimensional image feature extraction. S2DLDP
can be viewed as a sparse extension of graph-based 2D image
feature extraction methods. S2DLDP not only further improves the
performance of 2DLGEDA, but also learns an intuitive and inter-
pretable subspace. Unlike the sparse feature extraction methods
that operate on the very high dimensional image vectors, S2DLDP
directly works on 2D image matrices.

Our contributions to the feature extraction problems are as
follows. Firstly, we propose a novel framework, which imposes
the sparseness in the graph-based feature extraction methods.
Secondly, we give the spectral analysis of Kronecher product of
the local neighborhood graph matrices. Thirdly, the 3 vector-based
(1D-based) regression methods (i.e. ridge regression, lasso
regression and Elastic Net) are extended into the image-based
(2D-based) regression methods. At last, we obtain a novel frame-
work for sparse two-dimensional feature extraction based on
L,L, -norm regression using the spectral analysis and the extended
Elastic Net. Thus, the proposed framework generalizes the
manifold-learning-based non-sparse two-dimensional linear
feature extraction methods to sparse cases. Moreover, we show
the semantic 2D sparsefaces learned by S2DLDP. The sparsefaces
conquer the drawback that the transform matrices learned by the
2D methods have not semantic face properties. Therefore, we walk
a step forward in the direction on learning the semantic face basis
from vector-based pattern to image-base pattern. Furthermore, we
give the intuitive explanations to the learned subspaces on which
the 2D raw face images are projected. It is pointed out that the
essence of using S2DLDP for face feature extraction is to project the
2D face images on the face profile subspaces for representa-
tions and thus face recognition is also performed on the profile
subspaces.

The rest of the paper is organized as follows. In Section 2, we
briefly review the 2DLDEGA and 2DDLPP. S2DLDP algorithm is
described in Section 3. In Section 4, experiments are carried out to
evaluate our S2DLDP algorithm. Finally, the conclusions and future
work are given in Section 5.

2. Review of 2DLGEDA and 2DDLPP

Two-dimensional local discriminant methods have been pro-
posed as a supervised extension of 2DLPP that works directly on 2D
images. Assume that X; e Rm>*™(i=1,2,...,m) are the 2D image
matrices of the training images, where n; > n, and m is the number
of training samples. Suppose A is an n; x d-dimensional matrix,
where each column of A is a unitary column vector and d < n,. The
purpose of 2D feature extraction techniques is to seek an optimal
projective matrix A = (¢4,¢,,. . .,¢4) and then map a 2D image from
ny; x npy-dimensional image space into ann; x d-dimensional space
by the following linear projection:

Y =XA(i=1,2,..,m) 1)

2.1. Two-dimensional local graph embedding dscriminant analysis
(2DLGEDA)

The goal of 2DLGEDA [25] is to preserve the 2D image within-
class compactness and maximize the between-class separability.
2D image within-class compactness is characterized from the
intrinsic graph by the term

m m m m
2 2
Sw= D> [Yi=Y[eWi= > > [Xio—Xjo[[: Wy
i=1j=1

i=1j=1
=2 X[(DY-W") @ In,1XTp =2¢"X(LY @ I )XT ¢ )
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i 0, otherwise

where X = [X],XJ,...,.XT]" is the 2D image training sample matrix of
size mny x ny, and Dis a diagonal matrix whose entries are column
or row sums of W, I,, is an identity matrix of order n;, operator ® is
the Kronecher product of the matrices, N/ (X;) indicates the
samples in the k,, nearest neighbors of X; in the same class and
¢ denotes the projection vector, [¥ = DW—-WWY.

Similarly, 2D image between-class separability is characterized
from the between-class graph by the term

m. m m_m
2 2
Sp= > [Yi=Yil;wi=>" > IXip-Xjo ;W

i=1j=1 i=1j=1
=2¢"X[(DP-W") ® I, IX" ¢ = 20" X(L" @ I )X" 3)

Wh — 1, if (i,j) e Py, (c;) or (i,j) € Py, ()
y 0, otherwise

where X = [X],XJ,...,.XL]" is the 2D image training sample matrix of
size mny x ny, and Py (¢;) is a set of data pairs that are in the k,
nearest pairs among the set { (i,j)|i € mc,j¢n.}, where n.denotes the
index set of cth class and c varies from 1 to the number of classes. D
is a diagonal matrix whose entries are column or row sums of W?,
and Lb = Db—wh,

Finally, the criterion of 2DLGEDA is formally similar to the Fisher
criterion since they are both Reyleigh quotients and the optimal
projections can be obtained from solving the generalized eigen-
equation:

XT(LP @ In)Xp = XT(LY @ In,)Xp 4)

where /1 is generalized eigenvalue corresponding to the eigenvector
@. Then, the optimal transformation matrix of 2DLGEDA is com-
posed of the eigenvectors associated with the d largest eigenvalues.

2.2. Two-dimensional discriminant locality preserving projections

Two-dimensional discriminant locality preserving projections
(2DDLPP) were proposed in [24] and applied to facial expression
recognition. The objective function of the 2DDLPP is to maximize
Sy, the weighted sum of the distances between means of the
samples of different classes, and at the same time, to minimize S,
the weighted sum of the distances within the same class.
The discriminator of the 2DDLPP measuring the between-class
separability can be represented as

B m m b m m 9 b
Sp=>_ > [Vi=Yj[;Wy=>_ > [Xio—Xo| W

iZ1j=1 iZ1j=1
= 2¢0"X(D"-W") @ In, X" = 20"X(T" ® In )X" 0 (5)

1 1 | 2 . . .
E_5> x exp(— |M;—M; | /t), if X; and X; are in the different class
i 1

e otherwise

where D'is a diagonal matrix whose entries are column or row
sums of W ,and L =D —W'; m. is the number of cth class, M; is
the sample mean value of the ith class and t is the Gaussian kernel
parameter.

The discriminator of the 2DDLPP measuring the within-class
compactness can be represented as

m m m
= 2w 2w
Sw= Z Z HYi*YjHFWij = Z Z HXiQD*XjQDHFWU
i=1j=1 i=1j=1
=2¢"X[(D"-W") @ I, X" = 2¢"XL" ® I, )X ¢ (6)

W {exp(—[X,-—ij/t>, if X; and X; are in the same class
V=

0, otherwise

Similar to 2DLGEDA, the optimal projections of 2DDLPP can be
obtained solving the generalized eigen-equation:

XL @ I )X = X" & I, Xp @

The optimal transformation matrix of 2DDLPP is composed of
the eigenvectors associated with the first d largest eigenvalues of

Eq. (7).

2.3. Discussions about the 2D discriminant feature extraction
framework

It can be found that both 2DLGEDA and 2DDLPP are one of the
graph-based representative methods of the general 2D dimension-
ality reduction framework: X7(G, ® DX¢p = AXT(G, ® )X, where
G, and G, represent the local neighborhood graphs (or their graph
Laplacian) defined in different ways. Many existing 2D-based
methods such as those in [21-26] can also be described in this
framework.

There are two disadvantages of these 2D-based supervised
feature extraction frameworks. One is its high computational
complexity. The main computational cost is due to the calculations
of XT(Gq ® In,)X and X"(G, ® In,)X. The other is that the learned
projection axes are linear combination of all the original features,
hence it is often hard to give them a reasonable interpretation. In
the face recognition case, although 2D-based methods learn from
face images, they all cannot learn the face-like semantic transfor-
mation matrices (subspaces) similar to the vector-based Eigen-
faces, Fisherfaces and Laplacianfaces. In the following section, we
focus on the two disadvantages and develop the proposed S2DLDP
framework from 2DLGEDA.

3. Sparse two-dimensional local discriminant projections
(S2DLDP)

3.1. The model of S2DLDP

Our purpose is to develop an algorithm to extract the sparse
features which can be interpreted intuitively or semantically from
2D face images. Our idea is to impose a sparseness constrained
condition in Eq. (4). The model of S2DLDP is given as follows:

XU @ In)Xp = AXT(LY ® In )X

{subject to Card(p)<K ®)
where ¢ is the column vector corresponding to eigenvalue 4 and
Card(¢) denotes the number of non-zero elements of ¢. The only
difference between Eqs. (4) and (8) is that a sparse constraint is
imposed in Eq. (8). On the one hand, directly solving the general-
ized eigen-function of Eq. (4) cannot obtain the sparse projections.
On the other hand, the computations of XT(L’ ® I,)X and XT(L¥ ®
Iy, )X are expensive. Therefore, in order to avoid expensive compu-
tations and obtain the sparse solutions using L;-norm regression,
we develop two theorems in the following section.

3.2. The theorems

Theorem 1. Assume that Ais an eigenvalue and y is the corresponding
eigenvector of the generalized eigenvalue problem

(LP® In,)y = AL" ® In, )y C)

If there exist ¢ satisfying y=X¢ , then 1 and ¢ will be the
eigenvalue and the corresponding eigenvector of Eq. (4).
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Proof. We have
X' @I )Xo =X"(* @ In,)y = 2X"(L" @ I, )y = AX"(L" @ I, )X¢p.

Thus, 2 and ¢ are the eigenvalue and the corresponding
eigenvector of Eq. (4).1

From Theorem 1, instead of directly solving the generalized
eigen-problem in Eq. (4), we can solve the eigen-problem in Eq. (9),
and then find ¢ such that X¢ =y. However, directly solving the
eigen-problem in Eq. (9) is still computationally expensive due to
the eigen-decomposition of a large size matrix. The following
theorem can further help us reduce the cost of computing the
eigenvectors of Eq. (9).

Theorem 2. Assume that /. is the eigenvalue and z is the correspond-
ing eigenvector of the generalized eigen-problem

Pz ="z (10)

Let v be any non-zero unit vectorinRm andy =z ® v, then Aand y
are the eigenvalue and the corresponding eigenvector of the general-
ized eigen-problem in Eq. (9).

Proof. We have
L2 @ In)y =P ® In))(z® V) = (L2) ® (In,v) = A(L"2) ® (I, V)
=AMLY @ In)z® V)= ALY ® In,)y

Therefore, 4 and y are the eigenvalue and corresponding
eigenvector of the generalized eigen-problem in Eq. (9). H

From Theorem 2, instead of solving the generalized eigen-
problem in Eq. (9), we can solve the generalized eigen-problem in
Eq. (10) to obtain the generalized eigenvectors of Eq. (9) and save
the computational cost. As a result, we can obtain / and z from Eq.
(10) with lower computational cost because the sizes of L” and LW
are smaller than [” ® I,, and L¥ ® I, in Egs. (2)-(4).

3.3. The sparse solutions of S2DLDP

For y =X¢ in Theorem 1, such ¢ might not exist. There exist
three methods to obtain the approximating solutions: (i) ridge
regression [37], (ii) lasso regression [37] and (iii) Elastic Net [28].
Since we only focus on the 2D image based feature extraction
methods, we directly extend these three vector-based (1D-based)
regression methods into image-based (2D-based) cases. For more
details, please see the related references. The 2D extension of the 3
regression methods are stated as follows:

(i) 2D extension of the ridge regression: We can use 2D
extension of the ridge regression [37] to solve this problem

m m n;
¢ =arg min (Z > Xith, ) x <pyi)2+oc2<pf> (11
i=1h=1 j=1

where o > 0 and X;(h, :) is the hth row of image matrix X, y; is
the ith element of y and @; is the jth element of ¢. However,
the ridge penalty does not provide a sparse solution.

(ii) 2D extension of the lasso regression: With a L;-norm penalty
on ¢, we have the 2D extension of the lasso regression [37]:

m m n
¢ =arg min (Z 3 h ) x oy + B> \qo,-)) NG )
i=1h=1 j=1
where @’ denotes the absolute value of @;. Due to the nature
of the L, penalty, some coefficients will be shrunk to zero if
is large enough. However, the lasso has several limitations as
pointed out in [28], i.e. the number of selected features by the
lasso is limited by the number of samples. Therefore, lasso
regression is not the optimal method to obtain the sparse
solutions.

(iii) 2D extension of the Elastic Net: Recently, the Elastic Net was
widely used in feature selection. The Elastic Net generalizes
the lasso to overcome its limitations combining both the ridge
and lasso penalty. In this paper, the Elastic Net is extended to
2D case and used to obtain the sparse solutions:

¢ =arg min (Z D Xith, ) x o=y +a Y @+ ‘(/)j’>~
=1 j=1

i=1h=1

(13)

According to the above two theorems and Eq. (13), spectral
regression with L; penalty combining the spectral graph analysis
provides an effective approach for sparse subspace learning
problem. Thus, the optimal sparse projections of the proposed
method can be given by regression with L; norm. The optimal
sparse approximate solutions of Eq. (8) are called sparse two-
dimensional local discriminant projections (S2DLDP).

Denote y'=z@Vv! (I=1,..,d), where | <d<n, and z is the
eigenvector associated with the first largest eigenvalue by solving
the eigen-equation Eq. (10) and v"'s are mutually orthogonal unit
vectors. Then, the optimal projections can be obtained from the
following optimal problem:

m n ny 1y
0 =arg min (z > X x oy +2 3753 \@)
= i=1

i=1h=1
(14)

wherey! (I=1,..,d) denotes the ith element of y'. Thus, the optimal
sparse projection matrix of S2DLDP is A = (¢1,®5,....¢y)-

Remark: Regression methods, such as ridge regression, lasso
regression and Elastic Net, are usually performed on the vector-
based (1D based) optimization problems. Egs. (11-14) extend the
vector-based regression problems to the image-based (2D based)
regression problems. The essence of image-based regression is that
each row (or column) of the images is viewed as a vector and then
perform regression on these vectors as vector-based regression.

Note that there are at most n; orthogonal n;-dimensional
vectors v! (I=1,..,n;) and we thus can obtain n;eigenvectors
y'=zevl (I=1,..,n) for each eigenvector of Eq. (10) for regres-
sion using Eq. (14). Therefore, for each eigenvector of Eq. (10) we
obtain n; sparse projections, which construct a sparseface defined
in Section 4.1.1 in this paper. As a result, S2DLDP can obtain at most
m x ny ny-dimensional projection axes, which are far more than the
ones learned by the other 2D methods (the 2DLPP-based methods
canonlylearnn, (n, <n;)projection axes since the projection axes
are obtained from generalized eigenfunctions of n, x n, matrices
similar to Eq. (4)). Note that only the eigenvector z corresponding to
the largest eigenvalue of Eq. (11) is used for constructing y' for
regression in the S2DLDP algorithm since using too much sparse
projections cannot significantly improve the recognition rate but
increase the computational burden. If necessary, one can use all the
m x 1y projection axes.

We summarize S2DLDP algorithm in Table 1. Once the optimal
sparse projections are obtained, the samples can be projected to the
low-dimensional sparse subspace for classification.

Table 1
S2DLDP algorithm.

Step 1. Construct the similarity matrices W?, W*and the corresponding Laplace
matricesL?, [V,

Step 2. Compute the first eigenvector associated with the largest eigenvalue of
the eigen-equation (10).

Step 3. Select d mutually orthogonal unit vectors vy,v,...,vq.

Step 4. Compute y',y2,.. ydasy' =z@vi(i=1,2,...,d).

Step 5. Compute the d sparse solutions according to Eq. (14) to construct
transformation matrix A = (¢,9;,...,®).
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4. Experiment and analysis

In order to evaluate the proposed S2DLDP algorithm, we
compare it with 2DPCA, 2DLDA, 2DLPP and 2DLGEDA on Yale,
ORL and AR face databases. The Yale face database was used to
examine the performance of S2DLDP when both facial expressions
and illumination and sample size are varied. The ORL face database
was used to evaluate the performance of S2DLDP under conditions
where the pose, face expression vary. The AR face database was
employed to test the performance of S2DLDP under conditions
where there are variations in time, facial expressions and large
lighting conditions. The nearest neighborhood classifier with
Euclidean distance is used in all the experiments.

4.1. Experiments on the Yale face database

The Yale face database (http://www.cvc.yale.edu/projects/yale
faces/yalefaces.html) contains 165 images of 15 individuals (each
person providing 11 different images) under various facial expres-
sions and lighting conditions. In our experiments, each image was

manually cropped and resized to 50 x 40 pixels. Fig. 1 shows
sample images of one person in the Yale database.

4.1.1. Sparsefaces: an intuitive explanation

At first, we explore the learned projection matrix, i.e. the “faces”
learned by 2DPCA, 2DLDA, 2DLPP, 2DLGEDA and the proposed
S2DLDP. The first six images per class were used to learn the projection
matrix. The 2D “faces” learned by 2DPCA, 2DLDA, 2DLPP and 2DLGEDA
are potted in Fig. 2(a). The faces learned by S2DLDP with Card(¢) =4 :
4 : 20 are shown in Fig. 2(b). In order to clearly show the properties of
the faces learned by S2DLDP, binary images (non-zero values are set to
be 0 and the zero values are set to be 1) of Fig. 2(b) are shown in
Fig. 2(c). As we can see from Fig. 2, none of the “faces” learned by
2DPCA, 2DLDA, 2DLPP and 2DLGEDA can show us semantic face-like
images. The faces learned by the proposed S2DLDP are significantly
different form the other methods. The non-zero elements in the
matrices are automatically formed face profiles. Thus, S2DLDP learns a
set of semantic face profiles (or contours). We call the faces learned by
S2DLDP as sparsefaces or profile subspaces since each projection
matrix is a sparse matrix and show us a face-profile-like image.

Fig. 2. The “faces” learned by 2D methods. (a) From left to right: 2DPCA face, 2DLDA face, 2DLPP face and 2DLGEDA face. (b) The sparsefaces learned by S2DLDP. (c¢) Black and
white showing the sparsefaces corresponding to (b), the white points are non-zeros loadings and the black areas are zero elements.
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Now, let us consider the feature extraction step. A 2D face image
X; is projected on the sparsefaces subspaces, ie. Y;=XA=X
[@1,®5,....¢04]- Form this equation we can easily find that only the
non-zero elements in ¢; (i=1,..,d) are contributive to Y; in low-
dimensional subspace. Thus, only the non-zero elements in the
projective matrix A are contributive for low-dimensional 2D face
image feature Y;. This clearly shows us that the raw 2D images are
essentially projected on the profile subspace when using S2DLDP for
feature extraction. As a result, classification is also performed on the
profile subspaces. Assume that the 2D face images of different
individuals lie on different submanifolds, then the low-dimensional
feature Y;'s represent/reflect each submanifold’s distributions on the
profile subspaces. Using these face features for classification is exactly
performed for face recognition on the profile subspaces. This gives us
an insightful understanding for 2D face feature extraction and 2D face
recognition. Thus, the sparse 2D profile subspaces, i.e. sparsefaces,
explicitly show us what the learned subspace looks like and which
subspace the 2D images are projected on. As a result, the sparsefaces
overcome the drawback of lacking semantic properties in the
projection matrices learned by the other 2D methods.

The following experiments will prove that the profile subspaces
are more discriminative than the ones learned by the other 2D
methods. The efficiency of S2DLDP will be shown in Section 4.3 on a
larger database.

4.1.2. Robustness of the sparsefaces

In this experiment, we test the robustness of the sparsefaces. We
focus on the case that there are outliers (left-light, right-light and
surprised images can be viewed as outliers) in training set and text set.
The experiment was performed using the first six images (i.e. center-
light, with glasses, happy, left-light, without glasses, and normal) per
class for training, and the remaining five images (i.e. right-light, sad,
sleepy, surprised and winking) for test. Thus, there are outliers in both
training set and test set. For feature extraction, we used 2DPCA,
2DLDA, 2DLPP, 2DLGEDA and the proposed S2DLDP, respectively.

The maximal recognition rates of 2DPCA, 2DLDA, 2DLPP, 2DLGEDA
and S2DLDP with Card(p)=4 are 93.33%, 89.33%, 94.67%, 92.00%
and 97.33%, respectively. The top recognition rate of S2DLDP with
Card(¢p) =4 is significantly higher than the other methods. This
indicates that S2DLDP is more robust than the other methods under
the facial expressions and illumination variations. The recognition
rates of S2DLDP versus the variation of Card(¢) and dimension are
shown in Fig. 3. From Fig. 3, we can also see that the recognition rates
achieve its best result when Card(¢) =4 and then decrease with the
increase in the number of Card(¢p). The optimal sparseness is
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Fig. 3. The variation of Card, dimension and recognition rate of S2DLDP.

Card(¢) = 4with non-zero loadings occupying 10% of the elements
in the projection axes. This experiment also shows that the sparseface
when Card(¢p) =4, i.e. the first sparseface shown in Fig. 2 has more
discriminative ability. With the further increase in the number of
“Card”, the discriminant ability of S2DLDP first decreases and then
increases. This experiment indicates that the sparsefaces with a larger
“Card” are not necessary to achieve higher recognition rates.

4.1.3. Performance of the sparsefaces

In this section, we evaluate the performance of the proposed
method using the first 10 images of each person. For 2DPCA and
2DLDA, the only model parameter is the subspace dimension. For
2DLPP, 2DLGEDA and S2DLDP, the model parameters include
neighborhood size, kernel width and cardinality. In our experi-
ments, we simply set k,, = [—1, where | denotes the number of the
training samples per class. The justification for this choice is that
each sample should connect with the remaining [-1 samples of the
same class such that within-class samples can be mapped together
in the low-dimensional subspace. When using Gaussian kernel, we
simply set kernel width t= +oo(i.e. 0-1 pattern is used). The
neighborhood size k in 2DLPP, k, in 2DLGEDA and S2DLDP are
selected from {1,2,4,..,m—1}, and the cardinality K in S2DLDP is
selected from {1,2,...,n;} all by 5-fold cross-validation with one fold
for training and the other 4 folds for validation. The average
recognition rates of each method and the corresponding dimen-
sions are given in Table 2. The average recognition rates (%) versus
the dimensions are shown in Fig. 4. As it is shown in Table 2 and
Fig. 4, the top recognition rates of S2DLDP are significantly higher
than the other methods.

From the experimental results, we can draw a conclusion that
S2DLDP effectively extract the distcriminant features of the face
images and the face profile feature subspaces (i.e. sparsefaces) are
the more discriminative feature subspaces for 2D face recognition.
That is, S2DLDP not only can give an intuitive explanation that the

Table 2
The average recognition rates (percent) and the corresponding dimensions of five
methods on the Yale face database.

Methods 2DPCA 2DLDA 2DLPP  2DLGEDA  S2DLDP
Recognition rate (%)  84.50 84.33 84.50 85.67 87.83
Dimension 40x34 40x14 40x3  40x26 40 x 44
90
s e Stre

Recognition rate

——2DPCA
—+— 2DLDA 4
—=— 2DLPP

2DLGEDA E
—&— S52DLDP

0 5 10 15 20 25 30 35 40 45 50
Dimension

70

Fig. 4. The average recognition rates (%) versus the dimensions on the Yale face
database.
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low dimensional features are represented in profile subspaces, but
also shows us that face profile subspaces are the more discrimi-
native ones and of crucial importance for 2D face recognition.

4.2. Experiments on ORL face database

The ORL face database (http://www.uk.research.att.com/faceda
tabase.html) is used to evaluate the performance of S2DLDP under
conditions where the pose and face expression vary. The ORL face
database contains images from 40 individuals, each providing 10
differentimages. The facial expressions and facial details (glasses or
no glasses) also vary. The images were taken with a tolerance for
some tilting and rotation of the face of up to 20°. Moreover, there is
also some variation in the scale of up to about 10%. All images
normalized to a resolution of 56 x 46. Sample images of one person
in the ORL face database are shown in Fig. 5.

In the experiments, the parameters are selected and set as in
Section 4.1.3. We report the recognition rates of 5-fold cross-
validation with 2 samples per class for training. The maximal
average recognition rates of each method and the corresponding
dimension are given in Table 3. The maximal average recognition
rates (%) versus the dimensions are shown in Fig. 6. From Table 3
and Fig. 6, it can be found that S2DLDP obtains the highest average
recognition rate. This indicates that sparsefaces, i.e. face profile
subspaces, have more discriminant abilities than the image sub-
spaces learned by other 2D methods.

4.3. Experiments on the AR face database

The AR face database [38] contains over 4000 color face images
of 126 people (70 men and 56 women), including frontal views of
faces with different facial expressions, lighting conditions and
occlusions. The pictures of 120 individuals (65 men and 55 women)
were taken in two sessions (separated by two weeks) and each
section contains 13 color images. 20 images of 120 individuals are
selected and used in our experiments. The face portion of each
image is manually cropped and then normalized to 25 x 20 pixels
for computational efficiency. The sample images of one person are
shown in Fig. 7.

In the experiment, 10 images in the first section, i.e. the images
onthe firstline in Fig. 7.) are selected from the image gallery of each
individual to form the training sample set and the 10 images in the
second section (the images on the second line in Fig. 7) are used for
test. The parameters are selected and set as in Section 4.1.3. The
neighborhood size k in 2DLPP, k;, in 2DLGEDA and S2DLDP are set as
1,2,4,..,m—1, and the cardinality K in S2DLDP is varied from 1 to n,
to achieve the best results. The maximal recognition rate and
corresponding dimensions are shown in Table 4. In addition, we
also report the training time of 2DPCA, 2DLDA, 2DLPP, 2DLGEDA
and the proposed S2DLDP in Table 4 (CPU: Intel 3GHz, RAM: 2 GB).
The recognition rates (%) versus the dimensions are shown in Fig. 8.

As it can be seen from Table 4 and Fig. 8, the top recognition rate of
S2DLDP is the highest. The experimental results also support our
analysis mentioned in Sections 4.1 and 4.2 and suggest that S2DLDP is
more robust than 2DPCA, 2DLDA, 2DLPP and 2DLGEDA on facial
expressions, lighting conditions and time variations. Moreover, com-
pared with 2DLPP and 2DLGEDA, S2DLDP spends less time in learning

the sparse projections. The Kronecker products of the large size
matrices in 2DLPP and 2DLGEDA are rather time-consuming. Thus,
spectral analysis combining with the Elastic Net greatly reduces the
computation time since the computations of the Kronecker products of
the large size matrices are avoided. This experiment indicates that
S2DLDP is more effective and efficient than 2DLPP and 2DLGEDA.

4.4. Overall observations and discussions

According to the experiments performed on the three face
databases, the following conclusions can also be drawn:

e Differing from 2DPCA and 2DLDA, which take the global
Euclidean structure into account, 2DLPP, 2DLGEDA and
S2DLDP focus on the local geometric structure. Local structure
based manifold learning algorithms are superior to the methods
based on global structure. Although 2DLPP, 2DLGEDA and
S2DLDP all aim to discover the local geometric structure,
S2DLDP consistently performs better than 2DLPP and 2DLGEDA,
irrespective of the dimensional variation.

e Since the projection axes of S2DLDP are very sparse, the
recognition rates of S2DLDP might not be higher than the other
methods in the very low-dimensional subspace. But with a few
more dimensions, the best recognition rates of S2DLDP are
always significantly higher than the other methods’. This can be
seen from Figs. 4, 6 and 8.

Table 3
The maximal average recognition rates (percent) and the corresponding dimensions
of five methods on the ORL face database.

Methods 2DPCA 2DLDA 2DLPP 2DLGEDA S2DLDP
Recognition rate (%) 83.94 84.19 84.25 85.06 86.75
Dimension 46 x 2 46 x 4 46 x 3 46 x x9 46 x 41
90 . . . . . . .
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Fig. 6. The average recognition rates (%) versus the dimensions on the ORL face
database.

Fig. 5. Sample images of one person in the ORL face database.
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Fig. 7. Sample images of one person in the AR face database.

Table 4
The maximal recognition rates of five methods on the AR face database and the
corresponding dimensions and training time (second).

Methods 2DPCA  2DLDA  2DLPP  2DLGEDA  S2DLDP
Recognition rate (%)  58.17 57.08 58.67 58.92 62.16
Dimension 20x18 20x20 20x15 20x20 20 % 24
Training time (s) 0046  0.141 43359 48203 13.539

B5 — . . . : . . . : . .
et
B0 + - P e = e e
e g oo PE = oo ads 3
-, i A,&"H A
8| Lo M—r— i

@ $ ﬁ

E

c S0F .

.=

."é‘

S 45| 4/ .

2 /

o / —*—2DPCA

& f —+—20LDA
40 —&—2DLPP b
—+—2DLGEDA
4 —&— S2DLDP
3 .
3[] 1 1 1 1 1 1 1 1 1 1 1

2 4 B 8 0 12 14 18 18 20 22 24
Dimension

Fig. 8. The recognition rates (%) versus the dimensions on the AR face database.

e As it is shown in Fig. 2, the face subspaces (i.e. the transform
matrices) learned by the existing 2D methods cannot provide
semantic face images. Only the sparsefaces learned by S2DLDP
can give us the face-like images.

e Theoretically speaking, all the 2D methods aim to preserve some
kinds of geometric properties. But none of the compared 2D
methods can give a meaningful and intuitive explanation on the
learned subspace. However, S2DLDP not only gives an intui-
tively semantic interpretation of the learned subspace, but also
shows us that the face profile subspace is the more discrimi-
native feature subspace for face recognition. The explicit mean-
ing using sparsefaces for feature extraction is to project the 2D
face images on the face profile subspaces, which show us an
insightful understanding of the appearance-based 2D face
image representation and recognition.

5. Conclusions

In this paper, we develop a sparse learning technique called
sparse two-dimensional locality discriminant projections

(S2DLDP) for 2D image feature extraction. Similar to 2DDLPP
and 2DLGEDA, S2DLDP also aims to discover the local geometry
of the 2D image manifold. But significantly differing from the
2DDLPP and 2DLGEDA, the sparseness is imposed into the objective
function. We extend the vector-based regression problem to the
image-based (2D based) regression problems. Based on the spectral
analysis and the L;-norm regression using the 2D extension of the
Elastic Net, we obtain a novel framework for sparse two-dimen-
sional feature extraction.

The most important and interesting thing is that the sparse
transformation matrices, i.e. sparsefaces, learned by S2DLDP
provide us an insightful understanding for the feature extraction.
That is, assume that the 2D face images of different individuals lie
on different submanifolds, and then the low-dimensional features
obtained from the proposed method essentially represent/reflect
the submanifolds’ distributions on the profile subspaces with
maximal between-class separability and minimal within-class
compactness. Using this low-dimensional features obtained by
S2DLDP for classification is essentially performed classification on
the profile subspaces. Experimental results on the Yale, ORL and AR
face image databases show that S2DLDP not only can learn
intuitively semantic face subspaces, but also can show us that
face profile subspaces are more discriminative than the subspaces
learned by other 2D methods and of crucial importance for 2D face
recognition. Experiments show that S2DLDP is more effective and
efficient than 2DLPP, 2DDLPP and 2DLGEDA.
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