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Abstract. Although discriminative locality alignment (DLA), which is
based on the idea of part optimization and whole alignment, has bet-
ter performance than classical methods in feature extraction, DLA is too
overly sensitive to the values of the parameters and falls short of ex-
ploiting the full supervision information. We propose a novel supervised
feature extraction method, named enhanced discriminative locality align-
ment (EDLA), for robust feature extraction. EDLA is not sensitive on the
choice of the parameters, and both the local structure and class label
information are taken into consideration in EDLA algorithm. Moreover,
a kernel version of EDLA, named kernel EDLA, is developed through
applying the kernel trick to EDLA to increase its performance on nonlin-
ear feature extraction. Experiments on the face databases demonstrate
the effectiveness of our methods. C©2011 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.3605477]
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1 Introduction
Recently, graph-based methods for linear dimensionality
reduction1–4 have attracted much attention. These methods
typically rely on a graph to capture the salient geometric re-
lations of the data in the high-dimensional space. It has been
observed that, in general, supervised graph-based methods
outperform their unsupervised ones in various classification
tasks. It is common practice to construct a class graph by
only setting the adjacent nodes from the same class. That
is, points from the same class will be mapped to be close
to each other in the low-dimensional space. However, points
from different classe’s but nearby, may be projected to points
that are close by in the low-dimensional space. On the basis
of this fact, a methodology based on a repulsion graph to en-
hance the graph-based methods for dimensionality reduction
was proposed.5 The main idea is to repel points from differ-
ent classes that are nearby in the input space, while at the
same time taking advantage of the full available supervision
information (class graph). The idea in Ref. 5 has been used in
another context in graph drawing techniques,6, 7 in which the
main idea is that multiclass data points in high-dimensional
space tend to move due to local intraclass attraction or in-
terclass repulsion, and after being embedding into a low-
dimensional subspace, data points in the same class form a
compact submanifold, whereas the gaps between submani-
folds corresponding to different classes become wider than
before. The main difference is that the method in Refs. 6
and 7 does not use the class graph to define the attraction
forces. Instead it relies entirely on the k-NN graph to model
both the attraction part and repulsion parts. Hence, it falls
short of exploiting the full supervision information. How-
ever, those points that belong to the same class and are not
neighbors can bring significant discriminant information to
the dimensionality reduction matrix.
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Discriminative locality alignment (DLA)8, 9 is a recently
proposed dimensionality reduction method. The main idea
of DLA is generally described as three steps. First, discrimi-
native information is imposed over patches, each of which is
associated with one sample and its neighbors. Then, each part
optimization is weighted by margin degree. Finally the align-
ment trick is used to align all of the weighted part optimiza-
tions to the whole optimization. The advantages of DLA are
as follows: First, it distinguishes the contribution of each sam-
ple for discriminative subspace selection, which overcomes
the nonlinearity of the distribution of samples. Second, it pre-
serves discriminative information over local patches. Third,
it avoids the matrix singularity problem. However, the DLA
algorithm does not exploit the full supervision information,
and the recognition performance is heavily reliant on the
choice of the parameters.

Therefore, an improved method, named enhanced dis-
criminative locality alignment (EDLA), is first proposed in
this paper. The key idea of the proposed EDLA algorithm is
that both the local structure and all class label information
are taken into consideration. Though the proposed EDLA
model can preserve the local structure of the data space, it is
intrinsically linear. The EDLA model may fail to extract the
desired features when the data structure is nonlinear. Kernel-
based approaches10–14 can discover the nonlinear structure
of the images. That is, it can change the distribution of sam-
ples by nonlinear mapping. Thus, some linearly inseparable
samples in the original feature space may become linearly
separable in the high-dimensional feature space. Therefore,
kernel-enhanced discriminative locality alignment (KEDLA)
is further proposed in this paper.

The remainder of this paper is organized as follows:
Section 2 introduces discriminative locality alignment
method. Section 3 analyzes deficiencies of DLA and pro-
poses EDLA method. In Sec. 4, in order to attack the distri-
bution nonlinearity of the data, KEDLA is further proposed.
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Section 5 demonstrates the detailed experimental results on
image databases. The final section gives our conclusions.

2 Discriminative Locality Alignment
In DLA algorithm,8, 9 for each sample, one patch is first built
by the given sample and its neighbors, which may include
the samples from not only the same class but also different
classes from the given sample. For each patch, an objective
function is designed to preserve the local discriminative in-
formation first. Then, margin degree, which is defined for
each sample as a measure of the sample importance in con-
tributing classification, is used to weight each patch. Finally,
all the weighted part optimizations are integrated together to
form a global coordinate according to the alignment trick15–17

and the projection matrix can be obtained by solving a stan-
dard eigendecomposition problem.

2.1 Part Optimization
Consider a data set Xdata, which consists of N samples in
a high-dimensional space Rm. That is, Xdata = [x1,. . . , xN]
∈ Rm×N. For a given sample xi, k1 nearest neighbors with
respect to xi from samples in the same class with xi are
selected and denoted by xi1 , . . . , xik1 . k2 nearest neighbors
with respect to xi from samples in different classes with xi are
selected and denoted by xi1 , . . . , xik2

. By putting xi1 , . . . , xik1

and xi1 , . . . , xik2
together, the local patch for the sample xi can

be expressed as Xi = [xi , xi1 , . . . , xik1 , xi1 , . . . , xik2
].

For each patch, the corresponding output
in the low dimensional space is denoted as
Yi = [yi , yi1 , . . . , yik1 , yi1 , . . . , yik2

]. In the low-dimensional
space, we expect that distances between the given sample
and neighbor samples of a same class are as small as
possible, while distances between the given sample and the
neighbor samples of different classes are as large as possible.
That is, intraclass compactness and interclass separability
are achieved, simultaneously. Thus, we have

arg min
yi

k1∑
j=1

‖yi − yi j ‖2

arg max
yi

k2∑
p=1

‖yi − yi p ‖2.

(1)

Because the patch formed by the local neighborhood can
be regarded approximately linear,18 the part discriminator by
using the linear manipulation is formulated as follows:

arg min
yi

⎛
⎝ k1∑

j=1

‖yi − yi j ‖2 − β

k2∑
p=1

∥∥yi − yi p

∥∥2

⎞
⎠ , (2)

where β(β ∈ [0,1]) is the penalty parameter. The weight
vectors are defined as follows:

Wi = [

k1︷ ︸︸ ︷
1, . . . , 1, −β ∗

k2︷ ︸︸ ︷
(1, . . . , 1)]. (3)

Then, Eq. (2) reduces to

arg min
yi

[
k1∑

j=1
‖yi −yi j ‖2Wi ( j)+

k2∑
p=1

‖yi − yi p ‖2Wi (p+k1)

]

= arg min
yi

k1+k2∑
j=1

‖yFi {1} − yFi { j+1}‖2Wi ( j),

= arg min
Yi

tr
(
Yi Li Y T

i

)
(4)

where Fi = {i, i1, . . . , i k1 , i1, . . . , ik2} is the index set for the
i’th

patch, Li =

⎡
⎢⎢⎣

k1+k2∑
j=1

Wi ( j) − Wi

−W T
i diag(Wi )

⎤
⎥⎥⎦ .

2.2 Sample Weighting
Margin degree is used to quantify the importance of a sample
xi for discriminative subspace selection and is defined as
follows:

mi = exp

[
− 1

(ni + δ)t

]
, i = 1, . . . , N , (5)

where ni is the number of samples with different class with
the given xi in the ε-ball centered at xi, δ is a regularization
parameter, and t is a scaling factor.

Therefore, when the part optimization of the i’th patch is
weighted by the margin degree of the i’th sample, Eq. (4) can
be written as

arg min
Yi

mi tr
(
Yi Li Y

T
i

) = arg min
Yi

tr
(
Yi mi Li Y

T
i

)
. (6)

2.3 Whole Alignment
For each patch Xi, there is a low-dimensional representation
Yi. All Yi can be unified together as a whole by assuming that
the coordinate for the i’th patch Yi is selected from the global
coordinate Y = [y1,. . . ,yN], such that

Yi = Y Si , (7)

where Si ∈ RN×(k1+k2+1) is the selection matrix and an entry
is defined as

(Si )pq =
{

1, if p = Fi {q}
0, else.

. (8)

Then, Eq. (6) can be written as

arg min
Y

tr
(
Y Si mi Li ST

i Y T
)
. (9)

By summing over all the part optimizations described as
Eq. (9), the whole alignment is

arg min
Y

tr (Y Si mi Li ST
i Y T )

= arg min
Y

tr

[
Y

(
N∑

i=1
Si mi Li ST

i

)
Y T

]
= arg min tr

Y
(Y LY T )

, (10)
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where L = N
�

i=1
Si mi Li ST

i ∈ RN×N is the alignment matrix.

It is obtained based on an iterative procedure,

L(Fi , Fi ) ← L(Fi , Fi ) + mi Li (11)

for i = 1,. . . , N, with the initialization L = 0.
To obtain the linear and orthogonal projection matrix U,

such as Y = UTX, Eq. (10) is deformed as follows:

arg min
U

tr (U T XLXT U ) s.t. U T U = I. (12)

The transformation matrix U that minimizes the objective
function is given by the minimum eigenvalue solution to the
standard eigenvalue problem,

XLXT U = λU. (13)

3 Enhanced Discriminative Locality Alignment
In DLA algorithm, DLA has three particular advantages:
(i) It can deal with the nonlinearity of the distribution of
samples while preserving the discriminative information be-
cause of focusing on the local patch of each sample; (ii)
because the neighbor measurements of different classes are
considered, it well preserves discriminability of classes; and
(iii) because it obviates the need to compute the inverse of
a matrix, it avoids the small-sample-size problem. However,
DLA has some deficiencies as follows: (i) The local patch
for any sample xi is constructed by k1 nearest neighbors with
same class label of xi and k2 nearest neighbors with different
class label of xi. That is to say, k1 and k2 are invariable for any
sample; (ii) the resulting performance is too overly sensitive
to the values of the parameters k1 and k2; (iii) it only use the
part class graph to define the attraction forces; and (iv) the
weight vectors W makes two points become the same point
in the feature space if they belong to the same class or they
are neighbor samples from different classes.

The main goal of graph-based methods is to preserve
the properties of a graph representing the affinity between
data points in local neighborhoods of the high-dimensional
space. It has been observed that supervised graph-based
methods outperform their unsupervised methods in classi-
fication tasks. On the basis of this fact, a method based on
class graph and repulsion graph was proposed.5 The method
has high recognition performance. It is also generic and can
be applied to any graph-based method for linear dimension-
ality reduction.

Therefore, a novel method called EDLA is proposed in this
paper. Both the local structure and all class label information
are taken enough consideration in EDLA. Because the second
and third stages of the proposed EDLA are the same as those
of DLA, and the difference between DLA and EDLA mainly
focuses on the first stage—part optimization.

Consider a data set represented by the columns of a matrix
Xdata = [x1, x2,. . . , xN] ∈ Rm×N. Each sample xi belongs to
one of the c classes, and ni is the number of data samples,
which belong to the i’th class. For a given sample xi, we
select those samples that belong to the same class with xi
and term them class samples denoted by xi1 , . . . , xini −1 . In
order to determine how each sample is influenced by its class
samples, Gaussian weights are often used to do it. The weight
matrix is defined as follows:

W (c)
i j = exp

(−‖xi − x j‖2

t

)
(if ci = c j ), (14)

where 1 ≤ i ≤ N, 1 ≤ j ≤ ni – 1. The Euclidean distance
‖xi – xj‖2 is in the exponent, and the parameter t is used
as a regulator. It is difficult to determine the appropriate
value of the parameter t. However, in experiment part, a
method for determining a good value for the width t of the
Gaussian envelope is employed, and it usually gives a good
and reasonable estimate for the value of t.5

A repulsion graph is one that is extracted from the k-NN
graph, based on class label information. For a given sample
xi, its k nearest neighbors is used, and we select those samples
that retain among the k nearest neighbors of a sample xi and
are not in the same class as sample xi term repulsion samples
denoted by xi1 , . . . , ximi

(0 ≤ mi ≤ k). We define the weight
coefficients of sample xi and repulsion samples as follows:

W (r )
i j

= 1 [xi ∈ knn( j) ∨ x j ∈ knn(i)] ∧ (ci 	= c j ). (15)

Alternative weights were proposed for the repulsion graph
in Ref. 5, and it was defined as follows:

W (r )
i j = 1

σ + ‖xi − xi j ‖2/
(‖xi‖2 + ‖xi j ‖2

) , (16)

where 1 ≤ i ≤ N, 1 ≤ j ≤ mi, ‖ · ‖ is the L2 norm, and
the parameter σ is used as a regulator. Although it re-
quires an additional parameter, the authors experimentally
have demonstrated that the resulting performance is not too
overly sensitive on the choice of σ , and what’s more, it of-
ten gives markedly better results than constant weights. In
experiments, the parameter σ is set to 7.

The local patch for the sample xi is constructed by
putting xi1 , . . . , xini −1 and xi1 , . . . , ximi

together as Xi
= [xi , xi1 , . . . , xini −1 , xi1 , . . . , ximi

]. The corresponding
weight vector is

W ∗
i = [

W (c)
i (i, :),−β · W (r )

i (i, :)
]
. (17)

Therefore, the patch objective function of EDLA can be
expressed as

arg min
yi

k1+k2∑
j=1

‖yi − yi j ‖2W ∗
i ( j). (18)

4 Kernel Enhanced Discriminative
Locality Alignment

The kernel trick is widely used to enhance the separability
of the linear supervised dimensionality reduction algorithms.
The EDLA can be further improved by using the kernel trick.

The nonlinear mapping � is used to map the input data RN

into a Hilbert space [i.e., x 
→ �(x)]. We implement EDLA in
the Hilbert space �(x) = [�(x1),. . . ,�(xn)] The eigenvector
problem of Eq. (13) in the Hilbert space can be written as
follows:

[�(X )L��T (X )]U = λU. (19)

We formulate EDLA with the dot product to general-
ize it to the nonlinear case. The dot product in the Hilbert
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space is presented with a kernel function [i.e., K(xi,xj)
= �(xi)T�(xj)]. Because any eigenvector may be expressed
by a linear combination of the observations in feature space,
there exist coefficients vi, i = 1,. . . , N such that

U =
N∑

i=1

vi�(xi ), (20)

where v = [v1,. . . ,vN]T. Thus, Eq. (19) can be rewritten as

[�(X )L��T (X )]
N∑

i=1

vi�(xi ) = λ

N∑
i=1

vi�(xi )

[�(X )L��T (X )]�(X )v = λ�(X )v

[�T (X )�(X )]L�[�T (X )�(X )]v = λ[�T (X )�(X )]v

K L�K v = λK v . (21)

The solution of Eq. (21) is denoted by v* = [v1,. . . ,vd]
whose column vectors are the d eigenvectors corresponding
to the first d smallest eigenvalues. For a test sample x, we
compute projections onto the eigenvectors Uk according to

[U k · �(x)] =
N∑

i=1

νk
i [�(x) · φ(xi )]=

N∑
i=1

νk
i K (x, xi ), (22)

where νk
i is the i’th element of the vector νk .

Note that the distance matrix for KEDLA may be different
from that for EDLA and can be computed by kernel function
K(x, y) [assume that K[xi, xj] = �(xi)T�(xj)]. The distance
between sample xi and xj in the higher dimensional Hilbert
space is obtained as follows:

D(xi , x j ) = (�(xi ) − �(x j ))
T (�(xi ) − �(x j ))

= �(xi )
T �(xi ) − 2 ∗ �(xi )

T �(x j ) + �(x j )
T �(x j )

= K (xi , xi ) − 2K (xi , x j ) + K (x j , x j ). (23)

5 Experiments and Results
In this section, we implemented experiments on Olivetti Re-
search Laboratory (ORL), YALE, and UMIST databases to
evaluate the proposed algorithm. First, we determine the pa-
rameters (i.e., the parameter k in k-NN graph-based methods,
the penalty parameter β, kernel parameters) and, second, we
evaluated the performance of the proposed algorithms on
recognition accuracy.

For the sake of completeness, we compare the perfor-
mance of PCA,19 LDA,20 DLA, and the proposed EDLA.
Especially for DLA, we select the optimal values of k1 (the
number of neighbor samples from an identical class) and k2
(the number of neighbor samples from different classes) in
the experiments.

In order to avoid singularity problem and reduce com-
putational complexity, for all algorithms but PCA itself, the
first step is the PCA projection. We retain N – C dimensions
in the PCA step for LDA method, and PCA subspace is set
N – 1 dimensions for other methods.

5.1 Selection of Parameters
The parameter t in Gaussian weights is selected as follows:
1000 sample points are randomly from the data set (if your

Fig. 1 Performance of EDLA for varying β.

data set has <1000 points, then all of them are use.) and
the pairwise distances among them are computed. Then, t
is set to half the median of those pairwise distances.5 The
parameter k in the k-NN graph is selected as follows: for
simplicity, we assume that each class has the same sample
number m. Therefore, we generally select k = m − 1.

There is still one free parameter to be determined in EDLA
algorithm. It is the penalty parameter β, which is a common
parameter in both EDLA and DLA. In order to illustrate the
behavior of the EDLA with respect to the penalty parameter
β, we use the ORL face database and the Yale database to test
it. We randomly choose five different images per individual
to form the training set. The rest of each person is used for
the test. The experiment is repeated for 10 times on each
database. The reduced dimension in experiments is set to
60 for the ORL face database and to 40 for the Yale face
database. β is varied from 0 to 1, and Fig. 1 plots the average
recognition accuracy of EDLA with respect to β.

It can be seen from Fig. 1 that the recognition rates of
EDLA vary along with the change in β. The average recog-
nition rates of EDLA in two face databases reach the highest
recognition rate when β is 0.3 or 0.4. Therefore, we can set
β to 0.3 or 0.4 for experiments. For simplicity, we generally
select β = 0.3 in the next experiments.

5.2 Face Recognition Results
In this section, experiments are designed to evaluate the ef-
ficacy of EDLA and KEDLA algorithms. We use three data
sets that are publicly available for the experiments. PCA and
LDA are taken as the baseline methods for comparison. In ad-
dition, two popular kernels are involved in our experiments.
One is the polynomial kernel k(x, y) = (1 + xTy)d, and the
other is the Gaussian kernel k(x, y) = exp(–‖x – y‖2/t). For
KEDLA, we use these two kernels, respectively. The optimal
kernel parameters are selected.

Fig. 2 Sample images of one person on Yale database.
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Fig. 3 Average recognition rates versus the dimensions on Yale
database.

5.2.1 Experiments on Yale face database
The Yale database20 contains 165 gray-scale images of 15
individuals. The images demonstrate variations in lighting,
facial expression, and faces with or withou glasses. In our
experiment, every image was manually cropped and resized
to 100 × 80 pixels. Eleven sample images of one individual
are displayed in Fig. 2.

In the experiment, five images per individual are randomly
chosen for training and the remaining six images are used for
testing. The experiment is repeated for 10 times. We exper-
iment with the dimension of the reduced space d = [10:60]
(in Matlab notation), and for each value of d, we plot the
recognition rate. Figure 3 shows the average recognition rates

Fig. 4 Sample images of one person on ORL database.

versus the dimensions. From Fig. 3, we can see three main
points. First, the proposed EDLA outperforms DLA, PCA,
and LDA algorithms. Second, no matter which kernel is used,
our KEDLA almost outperforms other six algorithms. From
the first and second points, we can see that kernel approach
can indeed improve the face recognition accuracy. The max-
imal recognition rates and the corresponding dimensions are
given in Table 1. From Table 1, it can be seen that the max-
imal average recognition rates of KEDLA with polynomial
kernel and Gaussian kernel achieve 100%, respectively.

5.2.2 Experiments on Olivetti Research Laboratory
face database

The ORL face database21 contains 400 images of 40 indi-
viduals (10 samples per person). The images are captured at
different times and have different variations, including ex-
pressions (open or closed eyes, smiling or nonsmiling) and
facial details (glasses or no glasses). The images were taken
with a tolerance for some tilting and rotation of the face up
to 20 deg. The size of each face image is 112×92 pixels. Ten
sample images of one individual are displayed in Fig. 4.

Table 1 Maximal average recognition rates of EDLA, DLA, PCA, LDA, KEDLA, and KDLA on Yale
database and the corresponding dimensions and parameters.

EDLA DLA PCA LDA KEDLA (%) KDLA (%)

Method (%) (%) (%) (%) Polynomial Gaussian Polynomial Gaussian

Recognition rate 96.67 95.56 92.22 94.44 100 100 97.78 98.89

Dimension 14 11 20 13 22 40 43 12

Parameter β = 0.3 k1 = 3,
k2 = 4

/ / d = 0.2 t = 2 d = 0.8 t = 3

Table 2 Maximal average recognition rates of EDLA, DLA, PCA, LDA, KEDLA, and KDLA on ORL
database and the corresponding dimensions and parameters.

EDLA DLA PCA LDA KEDLA (%) KDLA (%)

Method (%) (%) (%) (%) Polynomial Gaussian Polynomial Gaussian

Recognition rate 93.5 91.5 90.5 90.5 95 93.5 90 91

Dimension 19 32 78 39 111 33 30 42

Parameter β = 0.3 k1 = 2,
k2 = 3

/ / d = 0.4 t = 3 d = 1.5 t = 1
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Table 3 Maximal average recognition rates of EDLA, DLA, PCA, LDA, KEDLA, and KDLA on UMIST
database and the corresponding dimensions and parameters

EDLA DLA PCA LDA KEDLA (%) KDLA (%)

Method (%) (%) (%) (%) Polynomial Gaussian Polynomial Gaussian

Recognition rate 97.01 94.02 90.57 95.86 99.08 97.93 93.79 94.71

Dimension 74 22 63 12 81 15 30 77

Parameter β = 0.3 k1 = 2,
k2 = 2

/ / d = 0.7 t = 4 d = 0.1 t = 3

Fig. 5 Average recognition rates versus the dimensions on ORL
database.

Fig. 6 Some sample images of one person on UMIST database.

Fig. 7 Average recognition rates versus the dimensions on UMIST
database.

For this experiment, five images per individual are ran-
domly chosen for training and the remaining five images are
used for testing. The experiment is repeated for 10 times.
Figure 5 illustrates the average recognition rates of each
method versus the dimensions. Table 2 lists the maximal av-
erage recognition rate of each method across 10 runs and
the corresponding dimension and parameter. From Fig. 5, it
can be seen that EDLA outperforms DLA, PCA, and LDA
algorithms irrespective of the variation of the dimensions.
From Table 2, we can also see that the recognition rates of
KEDLA and EDLA are close and KEDLA with polynomial
kernel performs a little better.

5.2.3 Experiments on UMIST face database
The UMIST database22 consists of a total 575 face images
of 20 people. The individuals are a mix of race, sex, and
appearance and are photographed in a range of poses from
profile to frontal views. The number of different views per
subject varies from 19 to 48. The size of each face image is
112×92 pixels. Figure 6 shows sample images of one person.

For this experiment, we form the training set by a random
subset of seven different poses per subject and the rest of the
database is used for testing. The experiment is repeated for
10 times. The recognition results are illustrated in Fig. 7. It
is shown that the proposed EDLA and KEDLA consistently
outperform other five algorithms irrespective of the variation
of dimensions. Table 3 lists the maximal recognition rate and
the corresponding dimension of each classification method.
It shows that KEDLA has the best performance.

6 Conclusions
In this paper, we develop a new linear dimensionality reduc-
tion algorithm called EDLA for feature extraction. Similar
to DLA, EDLA is also based on the idea of part optimiza-
tion and whole alignment. However, significantly differing
from the DLA, both the local structure and all class label
information are taken into consideration in EDLA. EDLA
can preserve more discriminative information and achieve
the higher recognition performance. We also extend EDLA
to the kernel space and develop a KEDLA algorithm. Exper-
imental results demonstrate the effectiveness of our EDLA
and KEDLA. Researches 9 and 23 show that unlabeled sam-
ples may be helpful to improve the classification perfor-
mance. In the future, we will generalize EDLA by taking
unlabeled samples into account and propose semisupervised
EDLA.
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