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Abstract: Discriminant locality preserving projection (DLPP) is a recently proposed algorithm, which is an extension of locality
preserving projections (LPP) and can encode both the geometrical and discriminant structure of the data manifold. However,
DLPP suffers from small sample size (SSS) problem which is often encountered in face recognition tasks. To deal with this
problem, the authors propose a novel regularised generalised discriminant locality preserving projections (RGDLPP) method
for facial feature extraction and recognition. First, locality preserving within-class scatter in DLPP method is replaced by
locality preserving total scatter and all the training samples are projected into the range of locality preserving total scatter.
Then the authors regularise the small and zero eigenvalues of locality preserving within-class scatter since the small
eigenvalues are sensitive to noise. RGDLPP address SSS problem by removing the null space of locality preserving total
scatter without loss of discriminant information. Meanwhile, RGDLPP can alleviate the problem of noise disturbance of the
small eigenvalues. Experiments on the ORL, Yale, FERET and PIE face databases show the effectiveness of the proposed
RGDLPP.
1 Introduction

Dimensionality reduction has been a key problem in many
fields of information processing, such as machine learning,
data mining, information retrieval and pattern recognition.
In the past several decades, many useful techniques for
dimensionality reduction have been developed. Linear
combination of features is of particular interest since it is
simple to calculate and analytically analyse. That is,
dimensionality reduction is realised via linear projection.
The most well-known techniques are the principal
component analysis (PCA) [1] and the Fisher linear
discriminant analysis (LDA) [2]. PCA looks for a subspace
where the samples have the minimum reconstruction error.
LDA aims to better discriminate patterns of different classes
by searching the projection axes on which the data points
of different classes are far from each other, while
constraining the data points of the same to be as close to
each other as possible. Unfortunately, it cannot be applied
directly to small size sample (SSS) problem [3]. To address
this problem, extensive methods have been proposed in the
literature [4–13].

Belhumeur et al. [4] proposed a two-stage PCA + LDA
method, also known as the Fisherface method, in which
PCA is first used for dimension reduction so as to make
within-class scatter matrix non-singular before the
application of LDA. However, to make within-class scatter
matrix non-singular, some useful discriminatory information
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may be lost. Direct LDA [5] method removes null space of
the between-class scatter matrix and extracts the
eigenvectors corresponding to the smallest eigenvalues of
the within-class scatter matrix. In [6] a LDA-based method
that makes use of the null space of within-class scatter
matrix was proposed. All the samples are first projected
onto the null space of within-class scatter matrix, where the
within-class scatter is zero, and then the optimal
discriminant vectors of LDA are those vectors that
maximise the between-class scatter. PCA is used to yield
them. However, the computational complexity of
determining the null space of within-class scatter matrix is
also very high because of the high dimension of within-
class scatter matrix. Huang et al. [7] proposed a PCA + null
space method to deal with SSS problem. In this method, at
first, PCA is applied to remove the null space of total
scatter matrix of the training sets samples. Then, the
optimal projection vectors are found in the remaining lower
dimensional space by using the null space method. In [8]
Yang and Yang proposed a variation of this method which
can extracts features separately from the principal and null
space of within-class scatter matrix. In [9] Lu et al.
proposed a direct fractional-step LDA (DF-LDA) which
combines the strengths of the direct LDA and fractional-
step LDA [10] approaches while at the same time
overcomes their shortcoming and limitations. The above
approaches focus on the problem of singularity of within-
class scatter matrix. In fact, the instability and noise
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disturbance of the small eigenvalues cause great problems
when the inverse of matrix is applied in the whitening
process of various LDA approaches. Dai et al. [11]
proposed a three-parameter regularised discriminant analysis
(RDA) method which regularises the eigenvalues of within-
class scatter matrix to solve SSS problem and the problem
of noise disturbance of the small eigenvalues. However, it
is difficult to determine three optimal parameters because of
the computational complexity. To overcome the complexity
problem, Chen et al. [12] further proposed a single
parameter RDA algorithm. Jiang et al. [13] also proposed
an approach for facial eigenfeature regularisation and
extraction. In this method, image space spanned by the
eigenvectors of within-class scatter matrix is first
decomposed into three subspaces. Then eigenfeatures are
regularised differently in these subspaces based on an
eigenspectrum model and the optimal projection vectors can
derive features both from the principal and null space of
within-class scatter matrix. Lately local descriptors such as
local binary patterns (LBP) [14, 15] have also gained
attention because of their robustness to challenge such as
pose and illumination changes.

Recent studies have shown that the face images possibly
reside on a non-linear submanifold [16–24]. Many
manifold-based learning algorithms have been proposed, for
example, Isomap [16], locally linear embedding (LLE) [17]
and Laplacian eigenmap [18]. Recently, Yan et al. [19]
introduced a general framework for dimensionality
reduction, called graph embedding, where a large number
of popular dimensionality reduction, for example, PCA,
LDA, Isomap, LLE and Laplacian eigenmap, could be
considered as special cases within the framework.
Manifold-based learning algorithms have been shown to be
effective in discovering the geometrical structure of the
underlying manifold. However, how to evaluate the maps
they generated on novel test data points remains unclear. He
et al. [20, 21] proposed the locality preserving projections
(LPP) that build a graph incorporating neighbourhood
information of the data set and provide a way to the
projection of the novel test data points. In contrast to most
manifold learning algorithms, LPP possess a remarkable
advantage that it can generate an explicit map. The
objective is linear and can be easily computed, like PCA
and LDA. Based on LPP, the Laplacianfaces was further
developed for face recognition [21], giving encouraging
performance. To consider the discriminant information of
recognition task, several locality preserving discriminant
analysis methods have been mentioned in recent years. Hu
[22] proposed an orthogonal neighbourhood preserving
discriminant analysis method, which effectively combines
the characteristics of LDA and LPP. Yu et al. [23]
presented a discriminant locality preserving projections
(DLPP) method to improve the classification performance
of LPP. All the mentioned locality preserving methods also
suffer from SSS problem too. So PCA approach, which
discards some useful discriminatory information, is often
used before LPP or DLPP. Yang et al. [24] proposed a null
space discriminant locality preserving projections (NDLPP)
algorithms. However, NDLPP merely utilises the
discriminant information in the null space of the locality
preserving within-class scatter.

In this paper, to overcome SSS problem encountered by
DLPP, we propose a regularised generalised discriminant
locality preserving projections (RGDLPP) method. At first,
we replace locality preserving within-class scatter in DLPP
approach by locality preserving total scatter. Then, to
108
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alleviate the problem of unreliable small and zero
eigenvalues caused by noise and the limited number of
training samples, a method for regularising the small and
zero eigenvalues of locality preserving within-class scatter
is proposed. It enables RGDLPP to be executed in the full
sample space and alleviates the over-fitting problem. An
efficient algorithm for implementing RGDLPP is also
developed without any loss of effective discriminatory
information. Extensive experimental studies on the ORL,
Yale, FERET and PIE face databases show the
effectiveness of the proposed RGDLPP method.

The organisation of rest of this paper is as follows. In
Section 2, we review briefly the discriminant LPP. In
Section 3, we propose the idea and describe the new
method in detail. In Section 4, experiments with face
images data are presents to demonstrate the effectiveness of
the RGDLPP algorithm. Conclusions are made in Section 5.

2 Outline of discriminant LPP

A set of face image samples {xi} can be represented as an
M × N matrix X ¼ [x1, x2, . . . , xN], where M is the number
of pixels in the images and N is the number of samples.
Each face image xi belongs to one of the C face classes
X1, . . . , XC. DLPP tries to maximise an objective function
as follows:

S
C
i, j=1(mi − mj)Bij(mi − mj)

T

S
C
c=1S

nc
i, j=1( yc

i − yc
j )W

c
ij ( yc

i − yc
j )T

(1)

where nc is the number of samples in the cth class, yi
c

represents the ith projected vector in the cth class, mi and
mj are separately the mean projected vector for the ith
class and jth class, that is, mi = (1/ni)S

ni
k=1yi

k and
mj = (1/nj)S

nj

k=1y j
k , where ni and nj are the number of

samples in the ith and jth class, separately. Wij
c represents

the elements of within-class weight matrix and
Wij

c ¼ exp(2‖xi
c 2 xj

c‖2/s2), and Bij represents the elements
of between-class weight matrix and Bij ¼ exp(2‖ fi 2 fj‖2/
s2), where s is an empirically determined parameter, xi

c

represents the ith vector in the cth class, fi is the mean of
the ith class, that is, fi ¼ (1/ni)Sk¼1

ni xk
i . Thus, the between-

class weight matrix is B ¼ [Bij] (i, j ¼ 1, 2, . . . , C ), the
within-class weight matrix is W ¼ diag(W(1), . . . , W(C )),
where W (i) ¼ [Wjk

(i)] ( j, k ¼ 1, 2, . . . , ni). It is clear that
both B and W are symmetric positive semi-definite matrices.

Suppose that the mapping from xi to yi is A, that is, yi ¼ ATxi,
then the objective function (1) can be rewritten as

J1(A) = ATFHFTA

ATX LX TA
(2)

where L and H are Laplacian matrices. L ¼ D 2 W,
D ¼ diag(D1, . . . , DC), Di is a diagonal matrix and its
elements are column (or row) sum of W (i); H ¼ E 2 B, E is a
diagonal matrix and its elements are column (or row) sum of
B, that is, Eii ¼ SjBij, F ¼ [ f1, f2, . . . , fC].

Now we would give the following definitions:
† locality preserving within-class scatter: Sw

L ¼ XLX T;
† locality preserving between-class scatter: Sb

L ¼ FHFT;
† locality preserving total scatter: S t

L ¼ Sb
L + Sw

L .
It is clear that Sw

L , Sb
L and S t

L are all symmetric positive
semi-definite matrices. The transformation matrix A ¼ [a1,
a2, . . . , ak] that maximises the objective function (2) can be
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doi: 10.1049/iet-cvi.2009.0138



www.ietdl.org
obtained by solving the generalised eigenvalues problem

(FHFT)ai = li(X LX T)ai, l1 ≥ l2 ≥ · · · ≥ lk (3)

or

SL
bai = liS

L
wai, l1 ≥ l2 ≥ · · · ≥ lk (4)

DLPP requires that matrix XLX T be non-singular. For many
applications involving SSS problem, this matrix is singular.
In fact, as long as the dimension of sample M is greater than
the number of samples N, XLX T must be singular. This can
be induced from simple matrix computation knowledge,
rank(XLX T) ≤ rank(L) ≤ N , M. Thus, DLPP cannot be
applied directly. So PCA approach, which discards some
useful discriminatory information, is used before DLPP.

3 Regularised generalised discriminant LPP

3.1 Fundamentals

To overcome SSS problem encountered by DLPP and
alleviate the problem of noise disturbance of the small

eigenvalues, in this section, we propose a novel approach

named RGDLPP. First, we replace Sw
L in DLPP criterion by

S t
L. Therefore, (2) is changed to

J2(A) = ATSL
bA

ATSL
t A

(5)

The transformation matrix A ¼ [a1, a2, . . . , ak] that
maximises the objective function (5) can be obtained by
solving the generalised eigenvalues problem

SL
b ai = liS

L
t ai, l1 ≥ l2 ≥ · · · ≥ lk (6)

The rank of the matrix S t
L is, in general, greater than that

of the matrix Sw
L . But S t

L can still be singular. If we use
PCA approach to make S t

L non-singular, some effective
discriminatory information will be discarded.

The matrices Sw
L and Sb

L are both positive semi-definite, so
the intersection of their null spaces is equal to the null space
of S t

L, namely, x|S t
Lx ¼ 0. As the null space of S t

L does
not contain discriminating information for the training data
(xTSw

L x ¼ 0 and xTSb
Lx ¼ 0), it may be removed from the

solution space without accuracy. Assume that the
eigenvalue decomposition of matrix S t

L is

SL
t = ULUT (7)

where L ¼ diag(l1, l2, . . . , lm ′), li . 0, i ¼ 1, 2, . . . , m′,
and m′ is the number of positive singular values of S t

L,
U ¼ [u1, u2, . . . , um ′] are the eigenvectors of S t

L

corresponding to eigenvalues l1, l2, . . . , lm ′ . Therefore,
(5) can be changed to

J2(P) = PTS̃
L
bP

PTS̃
L
t P

= PTS̃
L
bP

PTLP
(8)

where S̃
L
b = UTSL

b U , S̃
L
t = UTSL

t U = L, and A ¼ UP, where
P ¼ [ p1, p2, . . . , pk] [ Rm ′×k is the transform matrix that
maximises the objective function (8). Then, the
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denominator of the objective function (8) is always positive
for non-zero P, that is, S̃ L

t is positive definite.
Let l to be eigenvalue of (8). It is obvious that l ≤ 1.

When p is in the null space of S̃
L
w = UTS L

w U , we have

S̃
L
wp = 0. Note that S̃

L
t = S̃

L
w + S̃

L
b ; thus, we have

pTS̃
L
t p = pT(S̃

L
w + S̃

L
b )p = pTS̃

L
b p (9)

From (9), we have

pTS̃
L
b p

pTS̃
L
t p

= 1 (10)

From (10), we obtain that all the eigenvectors in null space of

S̃
L
w share the same maximal eigenvalue (¼1). Obviously, the

null space of S̃
L
w is unduly overemphasised, which leads to

over-fitting problem and poor generalisation. Besides, the
small eigenvalues are very sensitive to noise, which may

cause great problems when the inverse of S̃
L
t is applied. So,

we should regularise the small and zero eigenvalues.
Inspired by the literature [11–13], we propose a method for

regularising the small and zero eigenvalue of S̃
L
w . Assume that

the singular value decomposition of matrix S̃
L
w is

S̃
L
w = ŨwL̃wŨ

T
w (11)

where L̃w = diag{l̃
w
1 , l̃

w
2 , . . . l̃

w
r , l̃

w
r+1, . . . , l̃

w
m′}, r =

rank(S̃
L
w), Ũw = [ũw

1 , ũw
2 , . . . , ũw

m′ ] is the eigenvectors of S̃
L
w

corresponding to eigenvalues l̃
w
1 , l̃

w
2 , . . . , l̃

w
m′ , and the

eigenvalues are sorted in descending order l̃
w
1 ≥ · · · ≥ l̃

w
m′ .

The regularised eigenspectrum l̂
w
k is given by

l̂
w
i =

l̃
w
i , i , m
a

i + b
, m ≤ i ≤ r

a

r + 1 + b
, r , i ≤ m′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(12)

where a, b are constant and are given by a = (l̃
w
1 l̃

w
m(m − 1)/

l̃
w
1 − l̃

w
m) and b = (ml̃

w
m − l̃

w
1 /l̃

w
1 − l̃

w
m), respectively, m is

estimated by l̃
w
m+1 = max{∀l̃w

i |l̃
w
i , (l̃

w
med + 0.9(l̃

w
med −

l̃
w
r ))}, where l̃

w
med = median{∀l̃w

i |i , r}. Therefore the
criterion of RGDLPP can be defined as follows

J2(T ) = TTŜ
L
bT

TTŜ
L
t T

= TTŜ
L
bT

TT(Ŝ
L
b + L̂w)T

(13)

where L̂w = diag(l̂
w
i ), i = 1, 2, . . . , m′, Ŝ

L
b = Ũ

T
wS̃

L
bŨw, and

Ŝ
L
t = Ŝ

L
b + L̂w. The optimal projection matrix is

A = UŨwT where the column vectors of T are the leading

eigenvectors of (Ŝ
L
b + L̂w)−1Ŝ

L
b .

3.2 Computational consideration

In the above subsection, we should compute eigenvalue
decomposition of matrix S t

L (5). However, in real-world
application of such face recognition, gene expression and
web document recognition, the dimension M of the vector
109
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samples is usually large, so it is difficult to solve the
eigenvector of the M × M matrix S t

L directly. Besides, there
is still attendant problem of numerical accuracy when
diagonalising large matrix directly [25].

The Laplacian matrices L and H are always real symmetric
positive semi-definite, so L and H can be decomposed as
follows

L = VLLLV T
L , H = VHLH V T

H (14)

where LL is the eigenvalue matrix of L, that is, LL ¼ diag(l1
L,

l2
L, . . . , lN

L), the column of VL are the orthogonal eigenvectors
corresponding to eigenvalues of L; LH is the eigenvalue
matrix of H, that is, LH ¼ diag(l1

H, l2
H, . . . , lC

H), the
column of VH are the orthogonal eigenvectors
corresponding to eigenvalues of H.

It is easy to know that all the eigenvalues of both L and H
are non-negative since both L and H are real symmetric semi-
positive definite matrices. Consequently, Sw

L , Sb
L and S t

L can
be rewritten as

SL
w = XLXT = HwHT

w (15)

SL
b = FHFT = HbHT

b (16)

SL
t = SL

w + SL
b = HtH

T
t (17)

where Hw ¼ XVLLL
1/2 [ RM×N, Hb ¼ FVHLH

1/2 [ RM×C and

Ht ¼ [Hw\Hb] [ RM×(N + C ). Assume that the thin singular
value decomposition of matrix H t is

Ht = ULtQ
T (18)

where Lt is the singular value matrix of H t and L ¼ Lt
2,

U ¼ [u1, u2, . . . , um ′] is the left singular vector matrix of
H t, and Q is the right singular vector matrix of H t. So,
we can obtain the eigenvectors U ¼ [u1, u2, . . . , um ′] of S t

L

by the thin singular value decomposition of matrix Ht. Note
that the size of Hw, Hb and Ht are much smaller than that of
S t

L, since usually N ≪ M and C ≪ M.
Now, the algorithmic procedure of RGDLPP is formally

summarised as follows:

1. Construct the within-class weight matrix W and between-
class weight matrix B. Then calculate the within-class
Laplacian matrix L and between-class Laplacian matrix H.
2. Compute Hw, Hb and H t by (14)–(17).
3. Perform the thin singular value decomposition of matrix
Ht as (18).
4. Compute S̃

L
b = UTS L

b U and S̃
L
w = UTSL

wU .
5. Solve the singular value decomposition of matrix S̃

L
w as (11).

6. Regularisation of L̃w to L̂w according to (12).

7. Solve the eigenvalue problem (Ŝ
L
b + L̂w)−1Ŝ

L
b t = lt. Let

l1 ≥ l2 ≥ . . . ≥ lk be the k largest eigenvalues of

(Ŝ
L
b + L̂w)−1Ŝ

L
b and t1, t2, . . . , tk be the associated

eigenvectors.
8. The optimal projection matrix is given by A = UŨwT ,
where U ¼ [u1, u2, . . . , um ′], Ũw = [ũw

1 , ũw
2 , . . . , ũw

m′ ] and
T ¼ [t1, t2, . . . , tk].

This algorithm has several novelty features. First, we construct
within-class Laplacian matrix L and between-class Laplacian
matrix H directly in the image space, where the local
structure of face data points is exactly described. Second, the
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dimension of feature space is first greatly reduced without
loss on discriminative information by removing the null
space of S t

L. Third, discriminant evaluation is performed in
the full space dimension of the image data. Four, the over-
fitting problem of GDLPP is alleviated after regularising the
unreliable small and zero eigenvalues caused by noise and
the limited number of training samples.

3.3 Theoretical analyses of RGDLPP

As discussed previously, the transformation matrix A that
maximises the objective function (5) can be obtained by
solving the eigenvalues problem (S t

L)21Sb
L. When S t

L is
singular, we can use pseudo-inverse to deal with the
singularity problem, that is, we can replace (S t

L)21 by
pseudo-inverse (S t

L)+. The following theorem shows
A ¼ UP is the discriminant transformation of (S t

L)+Sb
L.

Theorem 1: Let A ¼ UP, then the columns of A are
eigenvectors of (S t

L)+Sb
L.

Proof: Let p [ Rm ′×1 be the eigenvector of (8) corresponding
to the eigenvalue l, then we have

S̃
L
b p = lLp (19)

Since L non-singular, (19) can be changed to

L−1S̃
L
b p = lp (20)

Because of S̃
L
b = UTS L

b U , (20) can be changed to

UL−1UTS L
b (Up) = l(Up) (21)

Because of (S t
L)+Sb

L ¼ UL21UTSb
L, Up is an eigenvector of

(S t
L)+Sb

L. A

4 Experiments and results

In this section, experiments are conducted on four well-
known face image databases, that is, ORL, Yale, FERET
and PIE to evaluate the performance of the proposed
RGDLPP algorithm. PCA [1], LDA [2], LBP [14, 15], LPP
[20, 21], DLPP [23] and the proposed method are used for
feature extraction. LDA, LPP and DLPP involve a
preceding PCA stage to avoid the singularity problem and
98% image energy is kept in PCA phase. For LPP, DLPP
and RGDLPP algorithms, the Gaussian Kernel
exp(2‖x 2 y‖2/s2) is used. Note that the value of s has a
great impact on the ultimate performances of LPP, DLPP
and RGDLPP algorithms. However, until now, it is still
unclear how to choose the optimal s [19]. The method in
[19] for choosing the value of s is used in our experiments,
that is, s is set as 2(e210)/25s0, e ¼ 0, 1, . . . , 20, where s0

is the standard derivation of the training data set. A nearest
neighbour classifier with cosine distance is employed to
classify in the projected feature space. Cosine distance
measure between two vectors, a and b, is defined as

cos dis(a, b) = ka, bl
‖a‖2‖b‖2

(22)

where ‖‖2 is the norm 2 operator. For LBP method, the
LBP8,2

u2 operator is used for feature extraction and the x2
IET Comput. Vis., 2011, Vol. 5, Iss. 2, pp. 107–116
doi: 10.1049/iet-cvi.2009.0138



www.ietdl.org
measure is used to measure the difference between the
histograms [14].

The experiments are implemented on a Mobile DualCore
Intel Pentium (1666 MHz) processor Hasee Computer with
898M RAM and the programming environment is
MATLAB 7.0.

4.1 Database

The ORL, Yale, FERET and PIE face databases are used in
our experiments. The ORL face database consists of a total
of 400 face images, of a total of 40 people (10 samples per
person). For some subjects, the images were taken at
different times, varying the lighting, facial expressions
(open/closed eyes, smiling/not smiling) and facial details
(glassed/no glassed). All the images were taken against a
dark homogeneous background with the subjects in an
upright, front position (with tolerance for some side
movement). In our experiments, each image in ORL
database was manually cropped and resized to 32 × 32.

The Yale face database contains 165 grey scale images of
15 individuals, each individual has 11 images. The images
demonstrate variations in lighting condition, facial
expression (normal, happy, sad, sleepy, surprised and
wink). In our experiments, each image in Yale database was
manually cropped and resized to 32 × 32.

The FERET face database contains 14 126 images from
1199 individuals. In our experiments, we select a subset
which contains 1400 images of 200 individuals (each
individual has seven images). It is composed of the images
whose names are marked with two-character strings: ‘ba’,
‘bj’, ‘bk’, ‘be’, ‘bf’, ‘bd’ and ‘bg’. The subset involves
variations in facial expression, illumination and pose (+158
and +258). In our experiments, each image in FERET
database was manually cropped and resized to 32 × 32.

The CMU PIE face database contains 68 individuals with
41 368 face images as a whole. The face images were
captured under varying pose, illumination and expression.
In our experiments, we select a subset (C29) that contains

Fig. 1 Images of one person in ORL

Fig. 2 Images of one person in Yale

Fig. 3 Images of one person in FERET

Fig. 4 Images of one person in PIE
IET Comput. Vis., 2011, Vol. 5, Iss. 2, pp. 107–116
doi: 10.1049/iet-cvi.2009.0138
Fig. 5 Some reconstructed images (the numbers in parentheses
are the reconstruction error)

Fig. 6 Comparison of eigenspectrum

a Eigenspectrum comparison of all eigenvalues
b Eigenspectrum comparison of the last 90 small eigenvalues
c Eigenspectrum comparison of the first 40 big eigenvalues
111
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1632 images of 68 individuals (each individual has 24
images). The C29 subset involves variations in illumination,
facial expression and pose. All of these face images
are aligned based on eye coordinates and cropped to
64 × 64. Figs. 1–4 show the sample images from the four
databases.

Fig. 7 Recognition rate against dimension of reduced space on the
ORL database

a Two trains
b Three trains
c Four trains
112
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4.2 Experiment on images reconstruction

In this subsection, an experiment on images reconstruction is
performed to verify that the dimension of the feature space is
greatly reduced without loss on discriminative information.
We randomly select 160 images from ORL face database.
According to the analysis in Section 3.1, the dimension can be
reduced from M to m′, where M is the number of pixels in the
images and m′ is the rank of S t

L, respectively. Then, in this
experiment, M is 1024 and m′ is 159. Obviously, the
dimension of the feature space is greatly reduced. Fig. 5 shows
an original image from ORL and its five reconstructed images
using the first k (k ¼ 10, 50, 100, 150, 199) features. The
reconstructed images become clearer and the reconstruction
errors decrease as the number of features is increased. When
the number of feature is 199, the reconstruction error is zero
and the original image is perfectly reconstructed.

4.3 Experiment on the robustness of RGDLPP

In this experiment, we evaluate the robustness of RGDLPP to
the noise disturbance of the small eigenvalues. We randomly
select 200 images from ORL face database. To demonstrate
that the small eigenvalues are sensitive to noise, two kinds

Fig. 8 Recognition rate against dimension of reduced space on the
Yale database

a Three trains
b Four trains
IET Comput. Vis., 2011, Vol. 5, Iss. 2, pp. 107–116
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of Gaussian noise, that is, zero mean with 0.001 variance and
zero mean with 0.01 variance, are added to the images. Fig. 6
shows the eigenspectrum of S̃

L
w of original images (the curve

of Original), corrupted images with Gaussian noise of zero
mean with 0.001 variance (the curve of Gaussian 0.001),
and corrupted images with Gaussian noise of zero mean
with 0.01 variance (the curve of Gaussian 0.01). Their
corresponding regularised eigenspectrum are also shown in
Fig. 6, that is, the curve of R-Original, the curve of
R-Gaussian 0.001 and R-Gaussian 0.01, respectively.

As shown in Fig. 6, we observe that the small eigenvalues
are more sensitive to noise than the big eigenvalues. The
differences among R-Original, R-Gaussian 0.001 and R-
Gaussian 0.01 are much smaller than the differences among
Original, Gaussian 0.001 and Gaussian 0.01. Then we can
find the proposed regularised method is much more robust
to noise.

4.4 Experimental results and analysis

In this experiment, we compare the performances of different
algorithms. We randomly select i (i ¼ 2, 3, 4 for ORL and
PIE, i ¼ 2, 3 for Yale and i ¼ 2, 3 for FERET) different

Fig. 9 Recognition rate against dimension of reduced space on the
FERET database

a Two trains
b Three trains
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samples of each individual for training, and the remaining
ones are used for testing. For each given i, we perform 20
times to randomly choose the training set and calculate the
average recognition rates as well as the standard deviation.
Figs. 7–10 illustrate the plot of recognition rate against the
dimension of reduced space for different algorithms. Note
that the recognition rates of LPP, DLPP and LDA on
FERET and PIE databases are very similar and their
performance curves are very similar in Figs. 9 and 10. For
the baseline method, we simply perform face matching

Fig. 10 Recognition rate against dimension of reduced space on
the PIE database

a Two trains
b Three trains
c Four trains
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Table 1 Recognition accuracy (%) on ORL (mean + std)

Size Baseline LBP PCA LDA LPP DLPP RGDLPP

2 66.8 + 3.4 78.3 + 2.4 66.4 + 3.4(60) 75.4 + 3.1(39) 75.9 + 3.1(38) 77.7 + 3.4(38) 80.8 + 3.5(45)

3 77.0 + 2.5 85.8 + 2.6 76.7 + 2.4(81) 85.1 + 1.9(39) 85.1 + 2.1(38) 85.4 + 2.0(38) 89.8 + 1.7(42)

4 81.7 + 2.3 90.3 + 1.8 82.0 + 2.1(45) 91.3 + 1.9(39) 91.3 + 1.7(40) 91.7 + 1.8(40) 95.1 + 1.5(87)

Table 2 Recognition accuracy (%) on Yale (mean + std)

Size Baseline LBP PCA LDA LPP DLPP RGDLPP

3 48.1 + 4.3 66.5 + 3.7 47.8 + 4.0(34) 65.4 + 4.6(14) 65.6 + 4.7(14) 66.4 + 4.8(14) 69.6 + 4.1(18)

4 52.9 + 4.2 69.7 + 4.0 53.8 + 4.8(41) 72.1 + 5.4(14) 73.3 + 5.4(18) 73.2 + 4.8(16) 78.5 + 3.6(25)

Table 3 Recognition accuracy (%) on FERET (mean + std)

Size Baseline LBP PCA LDA LPP DLPP RGDLPP

2 47.8 + 9.3 54.3 + 10.2 48.4 + 8.9(102) 51.0 + 7.4(51) 51.0 + 7.3(49) 51.1 + 7.4(51) 58.0 + 6.5(357)

3 63.1 + 8.5 70.5 + 6.6 63.8 + 7.9(111) 72.5 + 8.0(49) 72.6 + 7.9(48) 72.5 + 7.9(45) 73.0 + 5.8(591)

Table 4 Recognition accuracy (%) on PIE (mean + std)

Size Baseline LBP PCA LDA LPP DLPP RGDLPP

2 41.9 + 1.6 54.1 + 1.9 39.3 + 1.5(65) 76.6 + 1.8(46) 76.8 + 1.7(47) 76.8 + 1.8(46) 80.0 + 2.0(119)

3 53.0 + 1.7 65.1 + 1.6 50.3 + 1.7(78) 83.9 + 1.3(49) 84.0 + 1.3(46) 84.1 + 1.3(46) 87.4 + 1.1(175)

4 61.7 + 1.9 72.5 + 1.7 58.8 + 2.0(91) 87.6 + 1.1(51) 87.7 + 0.9(49) 87.8 + 1.0(50) 90.3 + 0.9(235)
without any face extractor. Thus, the feature dimensions of
the baseline method are 4096 (64 × 64) for PIE and 1024
(32 × 32) for ORL, Yale and FERET. For the LBP method,
the images are divided into 4 × 4 regions for PIE and
2 × 2 regions for ORL, Yale and FERET. Then the size of
each sub-region is 16 × 16. The best performances obtained
by different algorithms as well as the corresponding
dimensionality of reduced subspace (the numbers in
parentheses) on ORL, Yale, FERET and PIE databases are
given in Tables 1–4, respectively. To evaluate the
computational efficiency of different algorithms, we also
give the average total CPU time of each method involved in
Tables 5–8. Note that the CPU time of baseline is not
reported in Table 2, since we use the raw data without
dimensionality reduction.

From Figs. 7–10 and Tables 1–8, we can obtain the
following conclusions:

Table 5 Comparison of CPU time (s) for each method on ORL

Size LBP PCA LDA LPP DLPP RGDLPP

2 2.328 0.078 0.080 0.082 0.156 0.313

3 2.328 0.140 0.156 0.201 0.235 0.641

4 2.328 0.218 0.230 0.264 0.360 1.078

Table 6 Comparison of CPU time (s) for each method on Yale

Size LBP PCA LDA LPP DLPP RGDLPP

3 0.844 0.031 0.032 0.034 0.047 0.094

4 0.844 0.047 0.049 0.050 0.062 0.157
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1. For each method, the recognition accuracy increases with
the increase of training samples sizes. The reason may be that
a large set of training data can sample the underlying
distribution more accurately than a smaller set.
2. PCA is simple to perform, but it generally performs much
worse than LBP, LDA, LPP, DLPP and RGDLPP. Its
recognition rates are just close to the baseline on all used
databases.
3. The LDA, LPP, DLPP and RGDLPP methods all
outperform the baseline method. The low dimensionality of
the face subspace obtained in our experiment show that
dimensionality reduction is indeed necessary as a pre-
processing for face recognition.
4. On the tested databases, our proposed RGDLPP
consistently outperforms PCA, LBP, LPP and DLPP
methods.

Table 7 Comparison of CPU time (s) for each method on FERET

Size LBP PCA LDA LPP DLPP RGDLPP

2 12.328 1.531 1.752 1.945 1.957 14.297

3 12.328 4.062 4.290 4.634 4.954 39.719

Table 8 Comparison of CPU time (s) for each method on PIE

Size LBP PCA LDA LPP DLPP RGDLPP

2 60.063 1.016 1.150 1.342 1.406 4.297

3 60.063 1.547 1.782 1.961 1.969 7.453

4 60.063 2.250 2.550 2.756 2.828 11.359
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Table 9 p-Values between LBP and GDLPP on different face databases

Data ORL(2) ORL(3) ORL(4) Yale(3) Yale(4) FERER(2) FERET(3) PIE(2) PIE(3) PIE(4)

p-value 0.0636 4.0054 × 1025∗
1.907 × 1026∗

0.3593 7.6294 × 1025∗
0.5034 0.1153 1.907 × 1026∗

1.907 × 1026∗
1.907 × 1026∗

The asterisks indicate a statistically significant difference between LBP and GDLPP at a significance level of 0.05

Table 10 p-Values between PCA and GDLPP on different face databases

Data ORL(2) ORL(3) ORL(4) Yale(3) Yale(4) FERER(2) FERET(3) PIE(2) PIE(3) PIE(4)

p-value 1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

The asterisks indicate a statistically significant difference between PCA and GDLPP at a significance level of 0.05

Table 11 p-Values between LDA and GDLPP on different face databases

Data ORL(2) ORL(3) ORL(4) Yale(3) Yale(4) FERER(2) FERET(3) PIE(2) PIE(3) PIE(4)

p-value 1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

4.0245 ×
1024∗

7.6294 ×
1025∗

1.907 ×
1026∗

0.5034 1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

The asterisks indicate a statistically significant difference between LDA and GDLPP at a significance level of 0.05

Table 12 p-Values between LPP and GDLPP on different face databases

Data ORL(2) ORL(3) ORL(4) Yale(3) Yale(4) FERER(2) FERET(3) PIE(2) PIE(3) PIE(4)

p-value 4.0054 × 1025∗
1.907 × 1026∗

1.907 × 1026∗
0.0044

∗
0.000402

∗
1.907 × 1026∗

0.5034 1.907 × 1026∗
1.907 × 1026∗

1.907 × 1026∗

The asterisks indicate a statistically significant difference between LPP and GDLPP at a significance level of 0.05

Table 13 p-Values between DLPP and GDLPP on different face databases

Data ORL(2) ORL(3) ORL(4) Yale(3) Yale(4) FERER(2) FERET(3) PIE(2) PIE(3) PIE(4)

p-value 1.907 ×
1026∗

1.907 ×
1026∗

3.814 ×
1026∗

0.0044
∗

7.6294 ×
1025∗

1.907 ×
1026∗

0.5034 1.907 ×
1026∗

1.907 ×
1026∗

1.907 ×
1026∗

The asterisks indicate a statistically significant difference between DLPP and GDLPP at a significance level of 0.05
5. LBP is competitive with LDA, LPP and DLPP methods on
ORL, Yale and FERET face databases. The recognition rates of
LBP can be still improved by using appropriate weights [14, 15].
6. RGDLPP is slightly slower than PCA, LBP, LPP and
DLPP. In fact, RGDLPP also requires more storage than
LDA, LPP and DLPP methods, since RGDLPP can extract
more features than other methods.

4.5 Evaluation of the experimental results

Is the proposed method statistically better than other methods
in terms of its recognition rate? To answer this question, let us
evaluate the experimental results in Tables 1–4 using
McNemar’s significance test [26, 27]. McNemar’s test is
essentially a null hypothesis statistical test based on a
Bernoulli mode. If the resulting p-value is below the
desired significance level (e.g. 0.05), the null hypothesis is
rejected and the performance difference between two
algorithms is considered to be statistically significant. The
p-values between LBP and GDLPP, PCA and GDLPP,
LDA and GDLPP, LPP and GDLPP, DLPP and GDLPP on
different face databases are reported in Tables 9–13,
respectively. Note that the numbers in parentheses denote
the sample size.

From Tables 9–13, we can obtain the following
conclusions:
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1. The proposed GDLPP statistically significantly
outperforms LBP in the trials except with two training
samples for ORL, three training samples for Yale and two,
three training samples for FERET.
2. The proposed GDLPP statistically significantly
outperforms PCA in all the experimental cases.
3. The proposed GDLPP statistically significantly
outperforms LDA, LPP and DLPP in all the experimental
cases except with three training samples for FERET.
4. The proposed GDLPP statistically significantly
outperforms all the other compared algorithms on PIE
database.

5 Conclusions and future work

In this paper, we proposed the RGDLPP method for face
recognition. At first, we replace locality preserving within-
class scatter Sw

L in DLPP approach by locality preserving
total scatter St

L. All training samples are projected into the
range of St

L to reduce dimensionality without loss on
discriminative information. Second, to alleviate the problem
of unreliable small and zero eigenvalues caused by noise
and the limited number of training samples, a method for
regularising the small and zero eigenvalues of locality
preserving within-class scatter Sw

L is proposed. Experimental
results on ORL, Yale, FERET and PIE face databases
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indicate that RGDLPP performs significantly better than
DLPP, LPP, LDA, PCA and LBP methods in terms of
recognition accuracy.

However, when there is only one training sample per
person available, which is called one sample problem
[28–34], the Laplacian matrix L and locality preserving
within-class scatter Sw

L are both zero matrices. Then DLPP
and our proposed RGDLPP fail to work. We will
investigate how to apply DLPP and RGDLPP to one
sample problem in the future work.
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