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In this paper, we propose a novel method for image feature extraction, namely the two-
dimensional local graph embedding, which is based on maximum margin criterion and
thus not necessary to convert the image matrix into high-dimensional image vector and
directly avoid computing the inverse matrix in the discriminant criterion. This method
directly learns the optimal projective vectors from 2D image matrices by simultaneously
considering local graph embedding and maximum margin criterion. The proposed method
avoids huge feature matrix problem in Eigenfaces, Fisherfaces, Laplacianfaces, maximum
margin criterion (MMC) and inverse matrix in 2D Fisherfaces, 2D Laplacianfaces and 2D
Local Graph Embedding Discriminant Analysis (2DLGEDA) so that computational time
would be saved for feature extraction. Experimental results on the Yale and the USPS dat-
abases show the effectiveness of the proposed method under various experimental
conditions.

Crown Copyright � 2011 Published by Elsevier Inc. All rights reserved.
1. Introduction

Techniques for dimensionality reduction in linear and nonlinear learning tasks have attracted much attention in the areas
of pattern recognition and computer vision. Linear dimensionality reduction seeks to find a meaningful low dimensional sub-
space from a high-dimensional input space. The derived subspace can provide a compact representation of the input data.
Two of the most fundamental linear dimensionality reduction methods are principal component analysis (PCA) [1] and linear
discriminant analysis (LDA) [2].

PCA aims to find a linear mapping, which preserves the total variance by maximizing the trace of feature covariance ma-
trix. The optimal projections of PCA are corresponding to the first k-largest Eigenvalues of the data’s total covariance matrix.
LDA is used to find the optimal set of projection vectors that maximize the ratio of the between-class scatter matrix and at
the same time minimize the determinant of the within-class scatter matrix. But, since the dimension of vectors is high and
the number of observations is small, usually tens or hundreds of samples, an intrinsic limitation of traditional LDA is that it
fails to work when the within-class scatter matrix becomes singular, which is known as the small sample size (SSS) prob-
lems. So far many effective and efficient methods [4–14] have been explored to solve the problem. To avoid the singularity
problem of LDA, Li et al. [3] used the difference of both between-class scatter and within-class scatter as discriminant
2011 Published by Elsevier Inc. All rights reserved.
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criterion, which is called maximum margin criterion (MMC). Since the inverse matrix does not need to be computed, the SSS
problem in traditional LDA is alleviated.

In some applications such as face and handwriting digit recognition, 2D images are usually transformed into 1D vector
through column by column or row by row concatenation. On the one hand, the image-to-vector transform procedure
may cause the loss of some useful structural information embedding in the original images. On the other hand, the resulting
1D image vectors of faces or handwriting digit usually lead to a high dimensional image vector space. To overcome the prob-
lem of high dimension, 2DPCA [15,16] extracts image features directly from 2D image matrices rather than 1D vectors and
the image matrices do not need to be transformed into vectors. The optimal projection axes are the orthogonal Eigenvectors
corresponding to the largest Eigenvalues. Due to the smaller size of image covariance matrix than original covariance matrix,
2DPCA requires less time to learn the optimal projections and achieves a better recognition rate. Li et al. [17–20] extended
the idea of directly using image matrix for LDA and presented 2DLDA. Image between-class covariance matrix and image
within-class covariance matrix were constructed for 2DLDA. Now (2D)2PCA [21], (2D)2FLD [22] and (2D)2 PCALDA [23] have
been proposed, in which the authors investigated two-directional two-dimensional projections to further reduce the dimen-
sion not only in row direction but also in column direction.

PCA, LDA and theirs extension methods have been successfully applied to some linear data. However, they fail to ex-
plore the essential structure of the data with nonlinear distribution. In order to overcome this problem, many nonlinear
feature extraction methods including kernel-based techniques and manifold learning based techniques have been devel-
oped. Kernel-based technique is implicitly mapping the observed patterns into potentially much high dimensional feature
space by a kernel trick Since ti is possible that the nonlinear data will be linearly separable in the kernel space. The widely
used kernel techniques are kernel principal component analysis (KPCA) [24] and kernel Fisher discriminant analysis
(KFDA) [25], which can be viewed as the kernel versions of PCA and LDA. KPCA and KFDA have been proved to be effective
in some real world applications. The kernel based methods can improve the linear discriminability at the cost of increasing
dimensions and the high computational cost. Furthermore, due to introducing the kernel trick, how to select different ker-
nels and how to assign the optimal parameters in kernels remain unclear. In most of the cases, experience still plays an
important role.

Unlike kernel-based methods, manifold learning-based methods are straightforward in finding the inherent nonlinear
structure hidden in the observe space. In the past few years many manifold learning-based algorithms have been presented.
Among them, isometric feature mapping (ISOMAP) [26], locally linear embedding (LLE) [27,28] and Laplacian Eigenmap (LE)
[29,30] are widely used. They have yielded impressive results on artificial and real world data sets. Salakhutdinov and Hinton
[42] used the reconstruction error as a regularizer and fine-tuned a deep nonlinear encoder network to learn a similarity
metric for nearest-neighbor classification.

In the real world, nonlinear data include non-Gaussian and manifold-value data. We usually deal with non-Gaussian
data from local patches because it can be viewed locally Gaussian and acurved manifold-value data which can be viewed
locally Euclidean [31,32]. Recently, He et al. [33,34] proposed locality preserving projections (LPP), which is a linear sub-
space learning method derived from Laplacian Eigenmap. Laplacianfaces aim to find an embedding space by preserved local
information and detected the essential face manifold structure. The optimal projection axes preserve the local structure of
the underlying distribution in the L2 Euclidean space. From analysis they found that LPP is connected with PCA and LDA. LPP
do not use the class label information and it is a unsupervised method. Xu et al. [43] propose three novel solution schemes
to solve the small sample size (SSS) problem. Chen et al. proposed the local discriminant embedding (LDE) [36] for feature
extraction and recognition. It combined locality and class label information to represent the intraclass compactness and
interclass separability. LDE take advantage of the partial structural information of classes and neighborhoods of samples.
However, it is difficult to decide the number of nearest neighbors of each sample and the number of nearest point pairs
from different classes in LDE. But if the training samples are insufficient and data dimension is high, especially for image
data, LPP and LDE cannot be used directly due to singularity of within-class scatter matrices. Hence, 2D-LPP [35,37,38]
was proposed to directly extract the proper features from image matrices based on the locality preserving criterion. Re-
cently, some variant versions of 2DLPP such as two dimensional local graph embedding discriminant analysis (2DLGEDA)
[39] and two dimensional discriminant locality preserving projection (2DDLPP) [40] were also proposed to improve the per-
formance of the 2DLPP.

However, the computational cost of 2DLPP and theirs extension methods are high because they involve dense matrix
Eigen-decomposition and singularity of within-class scatter matrices. So, in this paper we present two-dimensional local
graph embedding based on maximum margin criterion. Therefore, computational time would be saved for feature extraction
since it is not necessary to convert the image matrix into high-dimensional image vector and can avoid computing the
inverse matrix. This method directly computes the optimal projective vectors from 2D image matrices by simultaneously
considering local graph embedding [41] and maximum margin criterion techniques. 2DLDA, 2DLPP and 2DLGEDA must
compute the inverse matrix, while the proposed method avoids this computation successfully by the virtue of trace
difference, which potentially saves computational time on learning procedures.

The rest of the paper is structured as follows: In Section 2 we introduce 2DPCA, 2DLDA, 2DLPP, and 2DLGEDA. In Section 3,
we propose the idea and describe the proposed method in details. In Section 4, experiments on Yale face databases and USPS
database are presented to demonstrate the effectiveness of the proposed method. Finally, we give concluding remarks and a
discussion of future work in Section 5.
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2. Related works

Now let us consider a set of N sample imagesX1, X2, . . ., XN taken from an (m � n)-dimensional image space. We design a
linear transformation, which maps the original (m � n)-dimensional image space into an n � d-dimensional feature space.
LetX = [x1,x2, . . . ,xd] is an n � d-dimensional matrix, where xi is a unitary column vector. The method proposed here is
to project each image Xi, an (m � n) matrix, onto X by the following transformation:
Yi ¼ XiX; i ¼ 1;2; . . . ;N: ð1Þ
Then we get a m � d-dimensional projected feature Yi for each image Xi.

2.1. Two-dimensional Laplacianfaces (2DLPP) [33]

Let G = {X,S} be a complete undirected weighted graph with vertex set X and similarity matrix S 2 RN�N. Since a node in
the nearest-neighbor graph corresponds to an image Xi, the purpose of 2DLPP is to ensure the connected nodes stay as close
as possible and the intrinsic geometry of the data and local structure is preserved. The similarity matrix S can be Gaussian
weight or uniform weight of Euclidean distance using k-neighborhood or e-neighborhood, which was defined as:
Sij ¼
1; kXi � Xjk2

< e;
0; otherwise:

(
ð2Þ
Hence, the objective function of 2DLPP is defined as:
min
X

i;j

kYi � Yjk2Sij; ð3Þ
where Yi = xTXi and k�k represents the L2 norm. After some matrix analysis steps, the minimization problem of Eq. (3)
becomes:
arg min
x

xT XðL� InÞXTx;

s:t: xT XðD� InÞXTx ¼ 1;
ð4Þ
where X = [X1,X2, . . . ,XN] is the training space of size N(m � n), and D is a diagonal matrix whose entries are column or row
sums of S. L = D � S is the Laplacian matrix, and In is an identity matrix of order n, operator � is the Kronecher product of the
matrices.

The optimal d projection vectors that minimizes the objective function is computed by the minimum Eigenvalue solutions
to the generalized Eigenvalue problem
XðL� InÞXTx ¼ kXðD� InÞXTx: ð5Þ
2.2. Two-dimensional Local Graph Embedding Discriminant Analysis (2DLGEDA) [39]

2DLGEDA was proposed as a supervised extension of 2DLPP that works directly on 2D images. The goal of 2DLGEDA is to
preserve the 2D image within-class compactness and maximize the between-class separability. 2D image within-class com-
pactness is characterized from the intrinsic graph Ww

ij by the term:
Sw ¼
XN

i¼1

XN

j¼1

kYi � Yjk2Wc
ij ¼ 2xT XðLw � InÞXTx; ð6Þ
where
Ww
ij ¼

1; Xi 2 Nþkw
ðXjÞ or Xj 2 Nþkw

ðXiÞ;
0; otherwise;

(
ð7Þ
where X = [X1,X2, . . . ,XN] is the 2D image training sample matrix of size N(m � n), and Dw is a diagonal matrix whose entries
are column or row sums of Ww;Nþkw

ðXiÞ indicates the samples in the kw nearest neighbors of Xi in the same class, and x de-
notes the projections vector,Lw = Dw �Ww.

Similarly, 2D image between-class separability is characterized from the between-class graph Wb
ijby the term:
Sb ¼
XN

i¼1

XN

j¼1

kYi � Yjk2Wb
ij ¼ 2xT XðLb � InÞXTx; ð8Þ
where
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Wb
ij ¼

1; if ði; jÞ 2 Pkb
ðptÞ or ðj; iÞ 2 Pkb

ðptÞ;
0; otherwise;

�
ð9Þ
where Pkb
ðptÞ is a set of data pairs that are in the kb nearest pairs among the set {(i, j)ji 2 pt, j R pt}, where pt denotes the index

set of tth class and t varied from 1 to c. Db is a diagonal matrix whose entries are column or row sums of Wb, and Lb = Db �Wb.
Finally, the criterion of 2DLGEDA is formally similar to the Fisher criterion since they are both Reyleigh quotients and the

optimal projections can be obtained from solving the generalized Eigen-equation:
XTðLb � InÞXx ¼ kXTðLw � InÞXx; ð10Þ
where k is generalized Eigenvalue corresponding to the Eigenvector x. Then, the optimal transformation matrix of 2DLGEDA
is composed of the Eigenvectors associated with the d top Eigenvalues.

3. Two-dimensional local graph embedding based on maximum margin criterion

3.1. Fundamentals

For a given sample Xi, the class label of the sample Xi is assumed to be pt, t 2 {1,2, . . . ,c}. We can divide the other mea-
surements into two groups: measurements in the same class with Xi and measurements from different classes with Xi.

We select k1 nearest neighbors with respect to Xi from measurements in the same class with Xi and k2 nearest neighbors
with respect to Xi from measurements in different classes with Xi. By putting k1nearest neighbors and k2 nearest neighbors
together, we can build the local graph embedding for the measurement Xi as eXi ¼ Xi;X

1
i ; . . . ;Xk1

i ;Xi1; . . . ;Xik2

h i
.

For each local graph embedding, the corresponding output in the low dimensional space is denoted byeY i ¼ Yi;Y
1
i ; . . . ;Yk1

i ;Yi1; . . . ;Yik2

h i
. In the low-dimensional space, we expect that distances between the given measurement

and the neighbor measurements of a same class are as small as possible, while distances between the given measurement
and the neighbor measurements of different classes are as large as possible.

For each local graph embedding in the low-dimensional subspace, we expect that distances between Yi and the neighbor
measurements of the same class are as small as possible, so we have:
JcðxÞ ¼min
XN

i¼1

XN

j¼1

Yi � Yj
i

��� ���2
¼ min

XN

i¼1

XN

j¼1

kYi � Yjk2Wc
ij ¼min

XN

i¼1

XN

j¼1

kxT Xi �xT Xjk2Wc
ij

¼ 2xT XððDc �WcÞ � InÞXTx ¼ 2xT XðLc � InÞXTx; ð11Þ
where
Wc
ij ¼

1; if Xj is in the Kc nearest from same class of Xi;

0; otherwise:

�
ð12Þ
where Lc = Dc �Wc.
Meanwhile, we expect that distances between Yi and the neighbor measurements of different classes are as large as pos-

sible, so we have
JpðxÞ ¼max
XN

i¼1

Xk2

q¼1

kYi � Yiqk2 ¼ max
XN

i¼1

XN

j¼1

kYi � Yjk2Wp
ij ¼max

XN

i¼1

XN

j¼1

kxT Xi �xT Xjk2Wp
ij

¼ 2xT XððDp �WpÞ � InÞXTx ¼ 2xT XðLp � InÞXTx; ð13Þ
where
Wp
ij ¼

1; if Xj is in the Kpnearest from different classes of Xi

0; otherwise:

�
ð14Þ
where Lp = Dp �Wp.
Since the local graph embedding formed by the local neighborhood can be regarded approximately linear, an optimization

objective function can be devised to minimize the difference between the intraclass compactness scatter and the interclass
separability scatter as follows:
JðxÞ ¼ min
Xk1

j¼1

Yi � Yj
i

��� ���2
� a

Xk2

q¼1

kYi � Yiqk2

 !
¼ min

XN

i¼1

XN

j¼1

kYi � Yjk2Wc
ij � a

XN

i¼1

XN

j¼1

kYi � Yjk2Wp
ij

 !

¼ min
XN

i¼1

XN

j¼1

kxT Xi �xT Xjk2Wc
ij � a

XN

i¼1

XN

j¼1

kxT Xi �xT Xjk2Wp
ij

 !
¼ trðxT XðDc �WcÞXTx� axT XðDp �WpÞXTxÞ ¼ trðxT XðLc � InÞXTx� axT XðLp � InÞXTxÞ; ð15Þ
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wherea is an adjustable parameter which balances Jc(x) and Jp(x).
Then we can easily find that X consists of the Eigen vectors associated with top d Eigenvalues of the above Eigen-

equation.
After training by the proposed method, the feature matrix of each image and a transformation matrix are obtained. Then a

nearest-neighbor classifier can be used for classification.
Given two imagesX1, X2 represented by the proposed method feature matrices Y1 ¼ y1

1; y
2
1; . . . ; yd

1

� �
and

Y2 ¼ y1
2; y

2
2; . . . ; yd

2

� �
, then the dissimilarity d(Y1,Y2) is defined as:
Table 1
The ma
class ar

Meth

PCA
LDA
LPP
MMC
2DPC
2DLD
2DLP
2DLG
The
dðY1;Y2Þ ¼
Xd

k¼1

Yk
1 � Yk

2

��� ���2
: ð16Þ
If the feature matrices of training images are Y1, Y2, . . ., YN (N is the total number of training images), and each image is as-
signed to a class pt. Then for a given test imageY, if dðY ;Ypl

Þ ¼minjdðY ;YjÞ and Yj 2 pj, the resulting decision isY 2 pl.

3.2. The outline of the proposed method

The proposed method based feature extraction algorithm can be summarized as follows:

Step 1: Construct the similarity matrix Wc
ij and Wp

ij using Eqs. (12) and (14).
Step 2: Calculate the intraclass compactness scatter Jc (x) using Eq. (11). Calculate the intraclass compactness scatter Jp(x)

using Eq. (13).
Step 3: Extract the sample feature using Eq. (15).
Step 4: Projecting all samples onto the obtained optimal discriminant vectors and yielding the projected Eigenvectors using

Eq. (1).
Step 5: Classifying the projected Eigenvectors with a classifier using Eq. (16).

4. Experiments

To evaluate the proposed method algorithm, we compared it with the PCA, LDA, LPP, MMC, 2DPCA, 2DLDA, 2DLPP and
2DLGEDA algorithms on two databases: the Yale face databases and the USPS database. When the projection matrix was
computed from the training part, all the images including training part and the test part were projected to feature space.
nearest neighborhood classifier with Euclidean distance was used in all the experiments. The experiments were carried
out on a PC (CPU: P4 2.8 GHz, RAM: 1024 MB).
Fig. 1. Sample images of one person in the Yale database.

ximal average recognition rates (percent) of each method on the Yale face database and the corresponding dimensions when the 2, 3, 4, 5, 6 samples per
e randomly selected for training and the remaining 9, 8, 7, 6, 5 images respectively for test.

od Number of training images

2 3 4 5 6

% (dim) 78.49 (29) 81.47 (40) 85.37 (36) 85.96 (40) 87.01 (46)
% (dim) 81.93 (14) 85.61 (14) 88.30 (14) 88.84 (14) 89.36 (14)

% (dim) 81.45 (22) 85.97 (24) 88.57 (21) 89.00 (18) 90.40 (21)
% (dim) 81.29 (21) 83.72 (14) 86.99 (14) 87.20 (14) 88.29 (14)

A % (dim) 88.67 (50 � 36) 90.58 (50 � 35) 91.05 (50 � 35) 92.00 (50 � 35) 93.73 (50 � 35)
A % (dim) 88.37 (50 � 15) 89.75 (50 � 39) 93.14 (50 � 20) 93.22 (50 � 20) 94.67 (50 � 3)
P % (dim) 83.93 (50 � 6) 86.00 (50 � 4) 94.10 (50 � 3) 93.11 (50 � 11) 93.47 (50 � 14)
EDA % (dim) 89.70 (50 � 39) 91.61 (50 � 38) 93.30 (50 � 38) 93.96 (50 � 38) 94.68 (50 � 37)

proposed method % (dim) 90.90 (50 � 36) 92.08 (50 � 36) 94.23 (50 � 38) 94.49 (50 � 37) 95.08 (50 � 37)



Fig. 2. The recognition rates (%) of the proposed method when the 2 images per person are randomly selected for training on the Yale face database with
varied a.

Fig. 3. The average recognition rates (%) of 2DPCA, 2DLDA, 2DLPP, 2DLGEDA and the proposed method versus the dimensions when the 2 images per person
are randomly selected for training on the Yale face database. The dimension here is the number of Eigenvectors.
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4.1. Experiment on the Yale face Database

The Yale face database (http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html) contains 165 images of 15 individu-
als (each person providing 11 different images) under various facial expressions and lighting conditions (i.e., center-light,
with glasses, happy, left-light, without glasses, normal, right-light, sad, sleepy, surprised, and winking). In our experiments,
each image was manually cropped and resized to 50 � 40 pixels. Fig. 1 shows sample images of one person on the Yale data-
base. In the experiments, l images (l varies from 2 to 6) are randomly selected from the image gallery of each individual to
form the training sample set. The remaining N � l images are used for test. For eachl, we independently run 10 times. We
varied Kc from 1 to l � 1 andKp from 2 to 20 with step 2.

http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
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For feature extraction, we used, respectively, PCA, LDA, LPP, MMC, 2DPCA, 2DLDA, 2DLGEDA 2DLPP and the proposed
method. In the PCA phase of LDA, LPP and MMC, we keep 90 percent image energy. The maximal average recognition rate
of each method and the corresponding dimension are given in Table 1 when the 2, 3, 4, 5, 6 samples per class are randomly
selected for training and the remaining 9, 8, 7, 6, 5 images are respectively for test. Table 1 presents the top recognition accu-
racy of the each method, which corresponds to different number of images per person used for training.

To find how the weight parameter a affects the recognition performance, we changed a from 1 to 250 with step 1. Fig. 2
displays the recognition rates with varied parameter a by carrying out the proposed method. The recognition rates (%) of the
proposed method when the 2 images per person are randomly selected for training on the Yale face database with varied a.
And this experiment run 1 times. From Fig. 2, it can be found that the proposed method obtains the best recognition rate is
92.56% when a=16.

Fig. 3 shows the average recognition rates (%) of 2DPCA, 2DLDA, 2DLPP, 2DLGEDA and the proposed method versus the
dimensions when the 2 images per person are randomly selected for training on the Yale face database. From the figure, it is
observed that the proposed method outperformed 2DPCA, 2DLDA, 2DLPP and 2DLGEDA methods comprehensively.

In addition, the average CPU time consumed for training, test and classification, and the maximal average recognition
rates of the foregoing nine methods are given in Table 2. The proposed method achieves its maximal recognition rate of
90.90%, and it needs less CPU time compared to other methods.

4.2. Experiments on USPS handwriting database

The USPS handwriting digital data include 10 classes from ‘‘0’’ to ‘‘9’’. Each class has 1100 examples. In our experiment,
we select a subset from the original database. We cropped each image to be size of 16 � 16. There are 100 images for each
class in the subset and the total number is 1000. Fig. 4 displays a subset of digital ‘‘2’’ from original USPS handwriting digital
Table 2
The average CPU time (s) consumed for training, test and classification, and the maximal average recognition rates (%) when the 2 images per person are
randomly selected for training on the Yale face database.

Methods PCA LDA LPP MMC 2DPCA 2DLDA 2DLPP 2DLGEDA The proposed method

Recognition rate (%) 78.49 81.93 81.45 81.29 88.67 88.37 83.93 89.70 90.90
dim (29) (14) (22) (21) (50 � 36) (50 � 15) (50 � 6) (50 � 39) (50 � 36)
CPU time (s) 0.155 0.151 0.152 0.140 0.0606 0.0589 0.0592 0.0587 0.0559

Fig. 4. The sample digital images ‘‘2’’ from USPS handwriting database.

Table 3
The maximal average recognition rates (percent) of each method on the USPS database and the corresponding dimensions when the 20, 30, 40, 50, 60 samples
per class are randomly selected for training and the remaining 80, 70, 60, 50, 40 images respectively for test.

Method Number of training images

20 30 40 50 60

PCA % (dim) 80.88 (20) 84.56 (20) 86.72 (29) 87.96 (26) 88.9 (27)
LDA % (dim) 82.72 (7) 85.83 (9) 86.80 (8) 88.00 (9) 88.57 (9)
LPP % (dim) 78.93 (25) 82.75 (14) 85.70 (29) 86.78 (13) 88.82 (17)
MMC % (dim) 79.85 (30) 83.74 (27) 86.43 (27) 87.88 (27) 89.40 (27)
2DPCA % (dim) 81.56 (16 � 3) 85.41 (16 � 3) 87.83 (16 � 3) 88.82 (16 � 4) 89.98 (16 � 4)
2DLDA % (dim) 78.01 (16 � 15) 81.80 (16 � 14) 84.60 (16 � 1) 86.04 (16 � 1) 87.32 (16 � 1)
2DLPP % (dim) 77.51 (16 � 5) 79.66 (16 � 4) 84.82 (16 � 4) 86.86 (16 � 5) 85.35 (16 � 5)
2DLGEDA % (dim) 81.75 (16 � 14) 83.93 (16 � 15) 87.80 (16 � 14) 88.96 (16 � 14) 89.43 (16 � 14)
The proposed method % (dim) 82.34 (16 � 3) 85.93 (16 � 3) 88.45 (16 � 3) 89.80 (16 � 3) 90.25 (16 � 3)



Fig. 5. The recognition rates (%) of the proposed method when the 20 images per class are randomly selected for training on the USPS database with
varied a.
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database. In the experiments, l images (l varies from 20 to 60) are randomly selected from the image gallery of each individ-
ual to form the training sample set. The remaining N � l images are used for test. For each l, we independently run 10 times.
We variedKc = l � 1 andKp from 5 to 50 with step 5.

In this experiment, we first perform PCA with keep 90 percent image energy on the data and then apply LDA, LPP and
MMC on the PCA subspace. Table 3 shows the best maximal average recognition rates and the corresponding dimensions
after carrying out PCA, LDA, LPP, MMC, 2DPCA, 2DLDA, 2DLPP, 2DLGEDA and the proposed method.

In this experiment, we also test the impact of aon the performance, which can be found in Fig. 5. We varied a from 0.1 to
24 with step 0.1. And this experiment also run 1 times to get a. Fig. 5 displays the recognition rates with varied parameter a
by carrying out the proposed method. Then it can be found that when a equals to 0.4, the recognition rate gains the best
value 80.38 %.

Fig. 6 shows the average recognition rates (%) of 2DPCA, 2DLDA, 2DLPP, 2DLGEDA and the proposed method versus the
dimensions when the 20 images per class are randomly selected for training on the USPS database. It is observed from the
Fig. 6 that the proposed method’s performance is far better than 2DPCA, 2DLDA, 2DLPP and 2DLGEDA method.
Fig. 6. The average recognition rates (%) of 2DPCA, 2DLDA, 2DLPP, 2DLGEDA and the proposed method versus the dimensions when the 20 images per class
are randomly selected for training on the USPS database. The dimension here is the number of Eigenvectors.



Table 4
The average CPU time (s) consumed for training, test and classification, and the maximal average recognition rates (%) when the 20 images per class are
randomly selected for training on the USPS database.

Methods PCA LDA LPP MMC 2DPCA 2DLDA 2DLPP 2DLGEDA The proposed method

Recognition rate (%) 80.88 82.72 78.93 79.85 81.56 78.01 77.51 81.75 82.34
dim (20) (7) (25) (30) (16 � 3) (16 � 15) (16 � 5) (16 � 14) (16 � 3)
CPU time (s) 1.542 1.504 1.478 1.014 0.610 0.598 0.587 0.601 0.548
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In addition, the average CPU time consumed for training, test and classification, and the top recognition rates of the fore-
going nine methods are given in Table 4. The proposed method achieves its top recognition rate of 82.34%, and it needs less
CPU time compared to other methods.
4.3. Observations and evaluations of the experimental results

The above experiments showed that the top recognition rate of the proposed method is always higher than other meth-
ods. From the experiments we can draw the following conclusions in details:

� Simple and more straightforward. 2D feature extraction methods such as 2DPCA, 2DLDA, 2DPCA and the proposed
method can directly extract the optimal projective vectors from 2D face image matrices rather than 1D feature extraction
methods such as PCA, LDA, LPP, MMC, and reserve useful structural information embedding in the original images. And
the proposed method consistently outperforms PCA, LDA, LPP, MMC, 2DPCA, 2DLDA, 2DLPP and 2DLGEDA inspire of the
variation of dimensions, which are shown in Tables 1 and 3.
� Efficient computation. 2DLDA, 2DLPP and 2DLGEDA must compute the inverse matrix of discriminant criterion, while the

proposed method avoids this computation successfully by virtue of trace difference, which saves much computational
time on feature extraction. The proposed method needs less CPU time compared to other methods which are shown in
Tables 2 and 4.
� The average recognition rates (%) of the proposed method versus the dimensions is better than other methods, which are

shown in Fig. 3 and Fig. 6.
� How to select parameter a, Kc andKp is still an open problems in feature extraction.

5. Conclusions

In pattern recognition, feature extraction techniques are widely employed to reduce the dimensionality of data and en-
hance the discriminatory information. In this paper, we proposed a new method for feature extraction and recognition,
namely the two-dimensional local graph embedding based on maximum margin criterion, which can directly extract the
optimal projective vectors from 2D image matrices by simultaneously considering local graph embedding and difference cri-
terion techniques. We adopt the difference of the intraclass compactness scatter matrix and the interclass separability scat-
ter matrix according to local graph embedding. The experiments conducted on the Yale face databases and handwriting
digital recognition on the USPS database indicates the effectiveness of the proposed method. In the future, we will make
more tests on other types of data and decide the optimal parameter a, Kc and Kp.
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