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a b s t r a c t

Based on linear regression, a novel method called reconstructive discriminant analysis (RDA) is

developed for feature extraction and dimensionality reduction (DR). RDA is induced from linear

Regression classification (LRC). LRC assumes each class lies on a linear subspace and finds the nearest

subspace for a given sample. But the original space cannot guarantee that the given sample matches its

characterizes the intra-class reconstruction scatter as well as the inter-class reconstruction scatter,

seeking to find the projections that simultaneously maximize the inter-class reconstruction scatter and

minimize the intra-class reconstruction scatter. Actually, RDA can also be seen as another form of

classical linear discriminant analysis (LDA) from the reconstructive view. The proposed method is

applied to face and finger knuckle print recognition on the ORL, extended YALE-B, FERET face databases

and the PolyU finger knuckle print database. The experimental results demonstrate the superiority of

the proposed method.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

With the last several decades, dimensionality reduction (DR) has
drawn considerable attention in the areas of image processing and
pattern recognition. Generally, in practical applications, the raw data
may contain variations of illumination and noises, which probably
lead to misclassifications. And, it is time-consuming to perform
classification directly in the high-dimensional space. For robust
recognition and fast computation, DR techniques are usually per-
formed first before the classification step. Although the DR step may
cause information loss, recent literatures [2,24] indicate that the lost
information has no substantial impact on the classification results.
Even more, the researchers achieve much higher recognition rates in
the reduced subspace [50,51]. As a fundamental problem in many
scientific fields, DR plays an important role in scientific research. The
goal of DR is to find a meaningful low dimensional representation of
high dimensional data. With respect to pattern recognition, DR is an
effective way to overcome the ‘‘curse of dimensionality’’ [1]. And
more importantly, it reveals the distinctive features from the original
data for pattern matching [2].

In the task of pattern recognition, discriminant analysis has shown
its significant discriminability and becomes the fundamental tool in
ll rights reserved.
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many areas. By far, numerous discriminant analysis methods have
been developed. Among the proposed methods, the most well-
known technique is linear discriminant analysis (LDA) [3]. Based on
Euclidean distance, LDA searches for the project axes on which the
inter-class data points are far away from each other while the intra-
class data points are close to each other. Unfortunately, it has been
pointed out that there are still some drawbacks existed in LDA. For
example, (1) it usually suffers from the small sample size (SSS)
problem [4] when the within-class scatter matrix is singular; (2) it
is only optimal for the case where the distribution of the data in
each class is a Gaussian with an identical covariance matrix [47];
(3) LDA can only extract at most c�1 features (c is the number of
total classes), which is suboptimal for many applications. Numerous
LDA variants [4–17,41–43] have been developed to solve the limita-
tions mentioned above. Recently, motivated by manifold learning
algorithms [18–20], researchers proposed a family of locality charac-
terization based discriminant analysis techniques [21–26,34]. Differ-
ent from LDA, these techniques extract local discriminative informa-
tion. Despite the different motivations of these algorithms, they can
be nicely interpreted in a general graph embedding framework
[19,22,26]. The graph embedding view of subspace learning provides
us a powerful platform to develop various kinds of dimensionality
reduction algorithms. However, the high computational cost restricts
these algorithms to be applied to large scale high dimensional data
sets. To address this issue, a strong tool named spectral regression
(SR) [52–56] was proposed for efficient subspace learning.
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Although the existing discriminant analysis techniques
achieve remarkable performances, we notice that these methods
were designed independently of classifiers. At the classification
stage of the pattern recognition progress, the classifier is usually
selected by experience. Obviously, the subspaces learned by
different discriminant analysis methods have different character-
istics that are invisible to the classifiers. However, one specific
classifier just explores the subspace following the classification
rule rather than the characteristic of the subspace. Therefore, the
DR method may not match the random selected classifier per-
fectly, which potentially degrades the performance of the pattern
recognition system. To connect DR methods with classifiers, one
feasible way is to design the DR methods according to the classifica-
tion rule of a specific classifier. In literatures, we find Yang et al. have
designed discriminant analysis methods [28,29] according to the
minimal local reconstruction error (MLRE) measure based classifier
and the local mean based nearest neighbor classifier (LM-NNC)
respectively. By combining the discriminant analysis methods with
their corresponding optimal classifiers, the researchers demonstrated
remarkable improvements against conventional discriminant analy-
sis methods.

Very recently, an important work called linear regression classi-
fication (LRC) [27] is reported by Naseem et al., where linear
regression is applied to estimate the reconstruction error. Then the
label of the probe image will be assigned as the class with a minimum
reconstruction error. In Naseem et al.’s pioneer work, the down-
sampled images are directly used for classification. However, neither
the original space nor the downsampled image space can guarantee
that the intra-class reconstruction error is minimal. To obtain the
best performance, the original space should have smaller intra-class
reconstruction errors and larger inter-class reconstruction errors. Due
to the variations of illumination and noises, the inter-class recon-
struction error is probably smaller than the intra-class reconstruction
error in the original space. Under this circumstance, the performance
of LRC will degrade. In order to strengthen the performance of LRC,
we first inherit the assumption and the classification rule of LRC.
Based on the inherited assumption and classification rule, we aim to
find a subspace that has smaller intra-class reconstruction errors and
larger inter-class reconstruction errors. Then we present a new
method called reconstructive discriminant analysis (RDA) for feature
extraction and DR.

To have an intuitive impression, we show the characteristics of
RDA, LDA and the MLRE-based feature extractor (MLREF). Based on
Euclidean distance, LDA searches for the directions that are most
discriminative to separate the samples belonging to different classes.
Different from LDA, MLREF and RDA are representation-based meth-
ods. MLREF finds the projections on which samples can be best
represented by their local intra-class neighbors. Motivated by the
classification rule of LRC, RDA finds the projections on which samples
can be best expressed by all of their intra-class samples.

The rest of the paper is organized as follows. Related works
are reviewed in Section 2. In Section 3, RDA is described in detail.
Connections with some related works are analyzed in Section 4.
In Section 5, the experiments are presented on the well-known
databases to demonstrate the effectiveness of the proposed
method. Finally, conclusions are drawn in Section 6.
2. Related works

2.1. Linear discriminant analysis (LDA)

Assume we have n samples from c classes. Let ni represents the
training number of the ith class and xj

iARd denotes the jth sample
of the ith class, i¼1,2,y,c, j¼1,2,y,ni. The objective function of
LDA is as follows:

wopt ¼ argmax
w

9wT Sbw9
9wT Sww9

ð1Þ

where

Sb ¼
Xc

i ¼ 1

niðmi�mÞðmi�mÞT ð2Þ

Sw ¼
Xc

i ¼ 1

Xni

j ¼ 1

ðxj
i�miÞðx

j
i�miÞ

T
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@

1
A ð3Þ

mi is the average vector of the ith class, and m is the average vector
of all samples. The optimal projections are the generalized eigenvec-
tors of S�1

w Sb corresponding to the largest generalized eigenvalues.

2.2. Linear regression classification (LRC)

LRC is based on the assumption that samples from a specific
object class lie on a linear subspace. Using this concept, a linear model
is developed. In this model, a probe image is represented as a linear
combination of class-specific samples. Thereby the task of recognition
is defined as a problem of linear regression. Least-squares estimation
(LSE) [31–33] is used to estimate the reconstruction coefficients for a
given probe image against all class models. Finally, the label is signed
as the class with the most precise estimation.

Assume Xi is a class-specific model generated by stacking the
n-dimensional image vectors

Xi ¼ ½x
1
i ,x2

i ,. . .,xni

i �ARn�ni , i¼ 1,2,. . .,c ð4Þ

Suppose y is a probe sample from the ith class, it should be
represented as a linear combination of the images from the same
class (lying on the same subspace), i.e.,

y¼Xibi, i¼ 1,2,. . .,c ð5Þ

where biARni�1 is the reconstruction coefficients. Given that
nZni, the system of equations in Eq. (5) is well conditioned and
can be estimated by LSE:

b̂i ¼ ðX
T
i XiÞ

�1XT
i y ð6Þ

The probe sample can be reconstructed by Eq. (7):

ŷi ¼Xib̂i, i¼ 1,2,. . .,c

¼XiðX
T
i XiÞ

�1XT
i y ð7Þ

Then the distance measure between the probe sample y and
reconstructed sample ŷi, i¼ 1,2,:::,c can be computed, and the
label is signed as the class with the minimum distance, i.e.,

min
i

Jy�Xib̂iJ
2, i¼ 1,2,. . .,c ð8Þ

2.3. Minimal local reconstruction error measure based discriminant

feature extraction

MLREF [28] is induced from the MLRE measure based Classifier
(MLREC).The MLRE-based feature extractor aims to find the
projections P that maximize the following criterion:

JðPÞ ¼
trðPT SL

bPÞ

trðPT SL
wPÞ

ð9Þ

where
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and wij
st is the reconstruction coefficient which can be obtained by

solving the following optimization problem:

min
i

xj
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2

ð12Þ

subject to
P

tw
ij
st ¼ 1 and wij

st ¼ 0 if xt
s does not belong to the set of

k-nearest neighbors of xj
i in Class s. The optimal projections are

the generalized eigenvectors of ðSL
wÞ
�1Sb corresponding to the

largest generalized eigenvalues.
3. Reconstructive discriminant analysis

3.1. Basic idea

As we mentioned above, our method is induced from LRC. LRC
finds the class with a minimum reconstruction error (or equiva-
lently, the nearest subspace) for a given sample. To obtain the
optimal performance, for each sample, the intra-class reconstruc-
tion error should be smaller than the inter-class reconstruction
error. Unfortunately, in the original space, the intra-class recon-
struction error is probably larger than the inter-class reconstruc-
tion error due to the illuminations and noises. To achieve a better
performance, we need to inherit the linear assumption [4,30] first.
Therefore RDA has the same reconstruction strategy as LRC. Then
we aim to find a subspace that minimizes the reconstruction error
of the intra-class samples and maximizes the reconstruction error
of inter-class samples simultaneously.

According to the linear subspace assumption, a probe image
can be represented as a linear combination of the training images
from the same class as shown in Eq. (5). The intra-class recon-
struction error can be computed as follows:

eij ¼ Jxj
i�Xib

j
iJ

2
ð13Þ

where bj
i is the optimal reconstruction weights obtained by

Eq. (6). Geometrically, to minimize the reconstruction error in
Eq. (13) is to find a point x̂j

i on the subspace spanned by the samples
from the ith class that is closest to xj

i. The intra-class reconstruction
error is actually the distance to its own class. Apparently, in a
discriminative space, this distance should be as small as possible.
Based on the intra-class reconstruction error, we can define the
intra-class reconstruction scatter of samples in the original spaceX

i

X
j

eij ¼
X

i

X
j

:xj
i�Xib

j
i:

2
ð14Þ

Similarly, the inter-class reconstruction error by the pth (pa i)
class is

ep
ij ¼ Jxj

i�Xpb
j
pJ

2
ð15Þ

To strengthen the separability of the different classes, a sample
should be far away from its nearest subspaces spanned by other
classes. Based on Eq. (15), for a given sample, we can find its k

heterogeneous nearest subspaces (the kclasses with the least
inter-class reconstruction errors). Assume the subspace spanned
by Xm (ma i) is one of the nearest subspaces of xj

i. Then the inter-
class reconstruction scatter of the k nearest subspaces in the
original space is defined as follows:X

i

X
j

X
m

em
ij ¼

X
i

X
j

X
m

Jxj
i�Xmbj

mJ2
ð16Þ

From the geometrical view, the intra-class reconstruction
scatter characterizes the compactness of the intra-class samples
and the inter-class reconstruction scatter characterizes the separ-
ability of different classes. Naturally, a sample should be close to
the subspace spanned by its intra-class samples. Simultaneously,
it should be far away from the subspaces that other classes lie on.
Therefore, it is obvious that larger inter-class reconstruction
scatters and smaller intra-class reconstruction scatters will lead
to better classification results.

We begin with LRC and use it as a steerer to induce a
discriminant analysis method RDA. Furthermore, RDA and LRC
share the same assumption and the same reconstruction strategy.
We can expect that the proposed method is optimal for LRC. It is
worthwhile to point out that some other classifiers such as sparse
representation-based classification (SRC) [35] have the same
classification rule as LRC. But they have different assumptions
and reconstruction strategies. So RDA and SRC may not match
perfectly.

Based on the above analysis, the motivation of RDA can be
explained intuitively. RDA minimizes the intra-class reconstruc-
tion error and maximizes the inter-class reconstruction error at
the same time. Geometrically, it pulls the samples to their own
subspace and pushes the samples away from other subspaces.
In other words, RDA aims to match the samples and their nearest
subspaces. We know that, for each sample, LRC finds the nearest
subspace rather than the nearest neighbor. LRC works effectively
when the samples match their nearest subspaces. We can image
that LRC should be more effective in the RDA subspace.

3.2. Fundamentals

The goal of RDA is to find the low-dimensional subspace into
which the intra-class reconstruction scatter is minimized while
at the same time the inter-class reconstruction scatter is max-
imized. Suppose we have obtained the optimal projections P¼
{u1,u2,y,ud} on which samples can be best represented by all of
their intra-class samples. Project each data point xj

i to the subspace:

yj
i ¼ PT xj

i ð17Þ

The intra-class reconstruction scatter of samples in the sub-
space isX
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where tr(U) is the notation of trace operator, and

SR
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X
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is called the intra-class reconstruction scatter matrix. It is easy to
prove that SR

w is a nonnegative definite matrix.
The inter-class reconstruction scatter of samples in the sub-

space isX
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X
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X
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where

SR
b ¼

X
i

X
j

X
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ðxj
i�Xmbj
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i�Xmbj
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T
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is called the inter-class reconstruction scatter matrix.
To maximize the inter-class reconstruction scatter and mini-

mize the intra-class reconstruction scatter simultaneously, we
tend to find the projections that maximize the following criterion:

JðPÞ ¼
trðPT SR

bPÞ

trðPT SR
wPÞ

ð22Þ

In a special case, when P is one-dimensional vector, i.e., P¼u,
then the criterion changes to

JðuÞ ¼
uT SR

bu
uT SR

wu
ð23Þ

We can find the optimal solutions P¼{u1,u2,y,ud} by solving
the d generalized eigenvectors of Eq. (24) corresponding to d

largest eigenvalues

SR
bu¼ lSR

wu ð24Þ

3.3. Implementation of RDA in small sample size cases

If the dimension of the original subspace is larger than the
total number of training samples, SR

w is always singular because
the following proposition holds:

Proposition 1. The rank of the intra-class reconstruction scatter

matrix SR
w is equal or less than n, i.e., rankðSR

wÞrn , where n is the

total number of training samples.

Proof. First of all, let us define the intra-class reconstruction
coefficient matrix:

bi ¼ ½b
1
i ,b2

i ,. . .,bni

i � ð25Þ

Based on the intra-class reconstruction coefficient matrix in

Eq. (25), we can further define the global reconstruction coeffi-

cient matrix:

b¼

b1 � � � � � � 0

^ b2 ^

^ & ^

0 � � � � � � bc

2
66664

3
77775 ð26Þ

Suppose X¼[X1,X2,y,Xc] is the column sample matrix. Accord-

ing to Eq. (26), we can rewrite the intra-class reconstruction

scatter matrix as follows:

SR
w ¼

X
i

X
j

ðxj
i�Xib

j
iÞðx

j
i�Xib

j
iÞ

T
¼ ðX�XbÞðX�XbÞT

¼XðI�bÞðI�bÞT XT
¼XMXT

ð27Þ

where M¼(I�b)(I�b)T and I is the identity matrix.
From the definitions, we know that XARd�n and MARn�n,

where d is the dimension of the image vector. It is easy to derive

that rankðXÞ ¼ rankðXT
Þrminðd,nÞ and rank(M)rn.

In practical applications, the image vector is very high-dimen-

sional, i.e., dbn. Thus rank(X)rn and rank(M)rn. Then we have

rankðSR
wÞrminðrankðXÞ,rankðMÞÞrn. &

In a high-dimensional space, the sample images are generally
linear independent, i.e., rank(X)¼n. Meanwhile, bj

i is composed of
irregular decimals. In this case, the intra-class reconstruction coeffi-
cient vectors are generally linear independent too, i.e., rank(bi)¼ni.
When rank(bi)¼ni, it is easy to prove rank(b)¼n. We notice that I�b
only changes the diagonal entries of b. According to the definition of
b, the diagonal block entries of b are the intra-class reconstruction
coefficient matrix bi which contains irregular decimals. Usually,
the matrix I�b is of full rank, i.e., rank(I�b)¼n. Then we have
rank(M)¼rank((I�b)(I�b)T)¼n. Finally, we derive rankðSR

wÞr
minðrankðXÞ,rankðMÞÞ ¼ n. From the above analysis, we find that
rankðSR

wÞ ¼ n generally holds in a high-dimensional space.
SR

w is a d by d matrix but rankðSR
wÞrn. When the total number

of the train samples is smaller than the dimension of the image
vectors, SR

w is singular. The inverse of SR
w can not be calculated

directly. To overcome the singularity problems, we first apply
principal component analysis (PCA) [36] to reduce the dimension
of the original subspace.

At the same time, the dimension of the PCA subspace can not
be too small. Let us review the step of solving reconstruction
coefficients in Eq. (6). If the number of training sample in each
class exceeds the dimension of the PCA subspace, XT

i Xi will be
singular too. In this case, the reconstruction coefficients can not
be computed directly neither.

In conclusion, to avoid the singularity problems, we perform
RDA based on the PCA-transformed features. The dimension of
the PCA-transformed features should be larger than the number
of training sample in each class and smaller than the total number
of the training samples.
3.4. The algorithm of RDA

The main steps of the algorithm are summarized in Table 1.
4. Further discussions

4.1. Connections with LDA

While LDA aims to find the projections that maximize the inter-
class scatter and simultaneously minimize the intra-class scatter, the
proposed method seeks to find projections that maximize the inter-
class reconstruction scatter and simultaneously minimize the intra-
class reconstruction scatter. Obviously, the differences between RDA
and LDA are the definitions of the scatters.

LDA tends to keep samples from the same class as near as
possible and separate the different classes as far as possible. To
achieve this goal, each sample is mapped to its corresponding
class mean vector as near as possible. And at the same time, the
different class mean vectors are mapped as far as possible in the
reduced subspace. From Eqs. (2) and (3), we can see clearly that
the distance from a sample x to the ith class (point-to-class
distance) is simply defined as the distance to the corresponding
class mean vector, i.e.,

di ¼ Jx�miJ
2

ð28Þ

where mi is the mean vector of the ith class.



Table 1
Algorithm of RDA.

Input: column sample matrix X
Output: transform matrix PRDA

Step 1: project the training samples into a PCA subspace spanned by its leading

eigenvectors: X̂¼ PT
PCAX

Step 2: construct the intra-class reconstruction scatter SR
w and inter-class

reconstruction scatter SR
b using X̂

Step 3: solve the generalized eigenvectors of SR
bu¼ lSR

wu and construct

P¼{u1,u2,y,ud} corresponding to the d largest nonnegative eigenvalues

Step 4: output PRDA¼PPCAP
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Thus, as Yang et al. [29] point out, the optimal classifier for
LDA is a minimum distance classifier (i.e., nearest class-mean
classifier).

In algorithm of RDA, we focus on the reconstruction error
rather than the geometric Euclidean distance. Naturally, we aim
to find the projections that minimize the intra-class reconstruc-
tion error and maximize the inter-class reconstruction error of
each class simultaneously. From the geometric view, the recon-
struction error can be seen as the point-to-class distance. In our
algorithm, the distance from a sample x to the ith class is defined
as the reconstruction error by the ith class, i.e.,

di ¼ Jx�XibiJ
2

ð29Þ

Consequently, minimizing the intra-class reconstruction scat-
ter is minimizing the distances from the samples to their own
classes. Similarly, maximizing the inter-class reconstruction scat-
ter is maximizing the distances to other classes. The ideas of RDA
and LDA are exactly the same. From this point of view, RDA can be
seen as another form of LDA with the different definitions of the
point-to-class distance.

Although the idea of RDA is the same as LDA, RDA has its own
characteristics. Compared with LDA, RDA can extract more
features. In the algorithm of LDA, since the ranks of intra-class
scatter and inter-class scatter are at most n�c and c�1 respec-
tively [4], where n is the total number of training samples and c is
the number of the classes. Thus, LDA can extract at most c�1
features. In our algorithm, the feature number we can extract
depends on the ranks of the intra-class reconstruction scatter and
the inter-class reconstruction scatter. Generally, in a high-dimen-
sional subspace, both the intra-class reconstruction scatter and
the inter-class reconstruction scatter are of full rank. Thus, RDA
can extract at most n features.
4.2. Connections with spectral regression discriminant analysis

Based on the graph embedding framework, SR performs
regression after the spectral analysis of the graph. A different
graph will lead to a different SR based approach. Particularly,
using the graph generated by LDA, Cai et al. developed Spectral
Regression Discriminant Analysis (SRDA) [55] and Spectral
Regression Kernel Discriminant Analysis (SRKDA) [56] for linear
cases and nonlinear cases respectively. In this subsection, we will
discuss the differences and the relationships between RDA and
the SR based discriminant analysis approaches.

The main purpose of SRDA and SRKDA is to enhance the
performances of LDA and Kernel Discriminant Analysis (KDA)
[57] respectively. The computational cost will be greatly reduced
especially in the high dimensional space. Benefiting from SR,
SRDA avoids the SSS problem. Unfortunately, unlike SRDA, RDA
still suffers from the SSS problem. Moreover, since both SRDA and
SRKDA employ the graph generated by LDA, similar to LDA, SRDA
and SRKDA can extract at most c�1 features, where c is the
number of the class. Differently, RDA can extract at most n

features, where n is the total number of training samples.
SR casts the problem of learning an embedding function into a

regression framework, which avoids eigen-decomposition of
dense matrices. As a powerful dimensionality reduction frame-
work, SR can be easily combined with RDA. After some simple
algebraic formulations, we can interpret RDA as the graph
embedding form. Therefore, SR can be integrated with RDA by
applying SR to solve the graph generated by RDA. Meanwhile, we
can extend RDA to its kernel version for nonlinear cases. Just like
SRKDA, SR can also be combined with the kernel version of RDA.
In the future works, we will do some further study on the
characteristics of the SR based RDA and the kernel extension
of RDA.

4.3. Connections with MLRE-based feature extractor

Although RDA is very similar to MLREF formally, there are
three significant differences between RDA and MLREF.

Firstly, they are under different assumptions. MLREF is based
on the locality concept. In the algorithm of MLREF, a sample is
represented as a combination of its k nearest neighbors. Differ-
ently, RDA is based on the linear subspace assumption, i.e., a
single class lies on a linear subspace and each samples can be
represented as a combination of its intra-class samples. In other
words, MLREF is a local method which preserves the local
discriminant structure. RDA is a global method which preserves
the global discriminant structure.

Secondly, MLRE-based feature extractor and RDA have differ-
ent optimal classifiers respectively. RDA follows the assumption,
reconstruction strategy and classification rule of LRC. The optimal
classifier for RDA is LRC. And the optimal classifier for MLREF is
the MLREC.

Thirdly, MLREF has two model parameters while RDA has only
one. MLREF needs to set the different neighborhood sizes to
characterize the intra-class and inter-class local neighbors. In
the classification stage, the neighborhood size still needs to be
specified for MLREC. However, the manually selected model
parameter can not promise the optimal performance. And if the
parameters in the feature extraction step unmatch with the
parameter in the classification stage, the MLREC may not be
optimal for the MLREF. In summary, it is hard to find the optimal
neighborhood sizes for both MLREF and MLREC.

4.4. Connections with LRC

The design of the RDA method is intuitively based on the
classification rule of LRC. Nevertheless, RDA and LRC are different
in nature. RDA is a feature extraction method and LRC is a
classifier. RDA inherits the assumption, reconstruction strategy
and classification rule of LRC. Therefore, RDA has close connec-
tions with LRC. RDA is modeled by maximizing the point-to-intra-
class reconstruction error and simultaneously minimizing the
nearest point-to-inter-class reconstruction error. We can con-
clude that RDA finds the optimal subspace for LRC. It can be seen
as a preprocessing step which can improve the performance of
LRC significantly.

LRC finds the nearest subspace of a given sample. When the
label of the given sample is the same as the label of the nearest
subspace, the given sample can be classified correctly. In other
words, LRC works more effectively on condition that the given
sample matches its nearest subspace. Unfortunately, this condi-
tion does not hold well due to the illuminations and noises. RDA
is designed to solve this problem. By maximizing the point-to-
intra-class reconstruction error and minimizing the nearest point-
to-inter-class reconstruction error simultaneously, RDA improves



Table 2
Details of the ORL, YALE-B and FERET databases.
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the compatibility between samples and their nearest subspaces.
Therefore, RDA and LRC can be seamlessly integrated into a
pattern recognition system.
Database Size Number of

subjects

Number of

samples per

subject

Number of training

samples per subject

ORL 32�32 40 10 3/4/5

YALE-B 32�32 38 64 5/10/20

FERET 40�40 200 7 3/4/5
5. Experiments

5.1. Face recognition

To evaluate the performance of RDA plus LRC, we applied it for
face recognition and compared with 4 DR methods (PCA, LDA, MLREF
and SRDA) using 3 different classifiers (NN, MLREC and LRC). The code
of SRDA is downloaded from http://www.zjucadcg.cn/dengcai/Data/
SR.html. During the experiments, three well-known face image
databases (ORL, extended YALE-B and FERET) were used to show
the robustness and effectiveness of the proposed method.

The ORL database [37] contains images from 40 individuals,
each providing 10 different images which were taken at different
times and the facial expressions, details (glasses or no glasses)
also vary. All images are grayscale and normalized to a resolution
of 32�32 pixels for efficiency. Fig. 1 shows sample images of one
person from ORL face database.

The YALE-B database [38,39] consists of 2414 frontal face images
of 38 subjects under various lighting conditions. The database was
divided in five subsets: subset 1 consisting of 266 images (seven
images per subject) under nominal lighting conditions was used as
the gallery. Subsets 2 and 3, each consisting of 12 images per subject,
characterize slight-to-moderate luminance variations, while subset 4
(14 images per person) and subset 5 (19 images per person) depict
severe light variations. The images are also grayscale and normalized
to a resolution of 32�32 pixels. Fig. 2 shows some images of one
person from the YALE-B face database.

The FERET database [40] includes 1400 images of 200 distinct
subjects. Each subject has seven images. The subset involves
variations in facial expression, illumination and pose. In our
experiment, the facial portion of each original image is cropped
automatically based on the location of eyes and resized to 40�40
pixels. Fig. 3 shows sample images of one person from FERET
database.

On the ORL and FERET face database, i (i¼3,4,5)images of one
individual are randomly selected for training and the rest are used
for test. On the YALE-B database, i (i¼5,10,20)images of one
individual are randomly selected for training and the rest are used
for test. The details of the experimental databases are summar-
ized in Table 2.
Fig. 1. Sample images of one person from the ORL face database.

Fig. 2. Sample images of one person from the YALE-B face database.

Fig. 3. Sample images of one person from FERET face database.
The experimental results of all the methods on three data sets
are shown in Table 3, where the value in each entry represents
the average recognition accuracy (in percentages) of 50 indepen-
dent trials, and the number in the brackets is the dimension with
the best recognition rate. The model parameter (knearest sub-
spaces) is also listed in Table 3. The recognition rates versus the
dimensions are illustrated in Figs. 4–7.

5.2. Finger-knuckle-print recognition

We also have done some further study on the PolyU finger
knuckle print (FKP) database [44–46] to evaluate the performance
of the proposed method.

In this database, FKP images were collected from 165 volun-
teers, including 125 males and 40 females. Among them, 143
subjects were 20–30 years old and the others were 30–50 years
old. The samples were collected in two separate sessions. In each
session, the subject was asked to provide 6 images for each of the
left index finger, the left middle finger, the right index finger and
the right middle finger. Therefore, 48 images from 4 fingers were
collected from each subject. In total, the database contains 7920
images from 660 different fingers. The average time interval
between the first and the second sessions was about 25 day.
The maximum and minimum time intervals were 96 day and 14
day respectively. All the samples in the database are histogram
equalized and resized to 55�110.

For simplicity and efficiency, only the right index fingers of the
FKP database are selected and used for recognition. Fig. 8 shows
some sample images of the right index finger from one individual.

In the experiments, 5 sample images of the right index finger
from one individual are randomly selected for training and the
rest are for test. This procedure is repeated for 50 times and the
maximal average recognition rates are shown in Table 4. We choose
the nearest subspace parameter k¼75. The recognition rates versus
the variation of dimensions are illustrated in Figs. 9 and 10.

5.3. Evaluation of the experimental results

The above experiments show that the recognition rates of RDA
plus LRC are higher than those of other combinations. But, is this
difference statistically significant? In this section, we evaluate the
experimental results using the null hypothesis statistical test
based on Bernoulli model [48,49]. If the resulting p-value is below
the desired significance level (i.e., 0.05), the null hypothesis is
rejected and the performance difference between two algorithms
is considered statistically significant. The evaluation results based
on the statistical test are summarized as follows:
(1)
 On the ORL database, RDA plus LRC outperforms PCA plus NN
significantly for all the tests (p¼0.013, 0.016 and 0.017). And
the results of the null hypothesis statistical tests also indicate
that, compared with NN, LRC is more suitable for RDA in the
trials with 4 and 5 training samples per class (p¼0.023 and
0.030 respectively). In the other tests on the ORL database,

http://www.zjucadcg.cn/dengcai/Data/SR.html
http://www.zjucadcg.cn/dengcai/Data/SR.html


Table 3
Maximal recognition rates on the ORL, YALE-B and FERET databases.

Method Database

ORL (k¼3) YALE-B (k¼1) FERET (k¼190)

Training number Training number Training number

3 4 5 5 10 20 3 4 5

PCAþNN 77.2(116) 81.4(152) 84.7(186) 36.1(176) 52.7(362) 68.9(727) 29.4(203) 33.0(242) 38.6(253)

PCAþLRC 81.4(95) 85.0(121) 88.7(142) 59.8(101) 82.7(148) 85.6(190) 40.7(298) 48.6(312) 52.0(335)

LDAþNN 83.1(39) 87.6(39) 91.7(39) 73.4(37) 78.1(27) 86.5(31) 61.9(33) 65.8(20) 69.9(199)

LDAþLRC 84.0(39) 90.8(39) 93.5(39) 65.3(37) 84.1(37) 87.4(37) 65.4(53) 73.4(30) 78.6(51)

MLREFþNN 81.6(65) 81.2(75) 84.0(81) 49.3(101) 56.7(151) 65.3(171) 57.0(159) 63.7(179) 71.0(191)

MLREFþLRC 85.3(65) 90.1(75) 92.3(81) 72.8(101) 87.6(151) 92.8(193) 71.3(159) 78.5(179) 84.3(191)

MLREFþMLREC 85.7(65) 90.8(75) 93.0(81) 70.3(101) 89.9(151) 93.4(193) 72.6(159) 81.7(179) 85.2(191)

LRC 82.1 88.6 92.3 58.0 81.7 90.9 42.0 50.6 55.4

RDAþNN 84.4(33) 89.3(29) 92.0(31) 68.2(71) 57.5(91) 50.1(119) 74.5(23) 77.2(29) 78.1(41)

RDAþLRC 86.2(47) 91.8(65) 94.8(67) 80.2(119) 92.3(87) 97.4(91) 85.7(27) 91.4(29) 94.6(35)
SRDAþNN 85.4(39) 91.4(39) 94.2(39) 72.6(37) 87.4(37) 95.5(37) 62.1(189) 74.7(197) 82.4(197)

SRDAþLRC 85.7(39) 91.6(39) 94.5(39) 71.9(37) 87.0(37) 95.1(37) 66.5(189) 77.9(197) 84.6(199)

Fig. 4. The recognition rates curves using 6 methods plus LRC on the YALE-B database with (a) 10 and (b) 20 training samples each class respectively.

Fig. 5. The recognition rates curves using 4 methods plus LRC, NN and MLREC on the YALE-B database with (a) 10 and (b) 20 training samples each class respectively.
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Fig. 6. The recognition rates curves using 6 methods plus LRC on the FERET database with (a) 3 and (b) 4 training samples each class respectively.

Fig. 7. The recognition rates curves using 4 methods plus LRC, NN and MLREC on the FERET database with (a) 3 and (b) 4 training samples each class respectively.

Fig. 8. Sample images of the right index finger from one individual.

Y. Chen, Z. Jin / Neurocomputing 87 (2012) 41–5048
although the recognition rates of RDA plus LRC are higher
than those of other combinations, the performance differ-
ences between RDA plus LRC and other combinations are not
statistically significant.
(2)
 On the YALE-B and FERET databases, RDA plus LRC is sig-
nificantly better than other combinations under condition of
variations in illuminations (po0.001).
(3)
 On the FKP database, RDA plus LRC also outperforms other
combinations significantly (po0.001).
5.4. Discussions

From the above results, we can draw the following conclusions:
(1)
 RDA plus LRC has a good performance and surpasses other
competing combinations significantly. The experimental
results stated in Tables 3 and 4 show RDA plus LRC achieves
higher recognition rates than other combinations.
(2)
 In most cases, the performance of LRC is higher than that of
the NN classifier. In the sight of representation, the NN
classifier classifies the test sample based on the best representa-
tion in terms of a single training sample, whereas LRC classifies
the test sample based on the best linear representation in terms
of all the training samples in a specific class. In other words,
LRC regards a specific object class as a whole and extracts the
subspace structure information, whereas the NN classifier treats
each sample separately and ignores the subspace structure



Table 4
Maximal recognition rates on the finger knuckle print database.

Method PCAþNN PCAþLRC LDAþNN LDAþLRC SRDAþLRC SRDAþNN

Rates 89.4(37) 88.1(31) 86.7(31) 91.2(57) 93.3(99) 90.3(97)

Method MLREFþMLREC MLREFþNN MLREFþLRC LRC RDAþNN RDAþLRC

Rates 90.0(107) 83.5(107) 88.5(107) 86.1 89.9(37) 93.9(69)

Fig. 9. Recognition rates curves using 6 methods plus LRC on the FKP database.

Fig. 10. Recognition rates curves using 4 methods plus LRC, NN and MLREC on the

FKP database.
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information. For a given sample, NN evaluates the similarity of
each training sample by Euclidean distance and LRC evaluates the
similarity of each object class. It is obvious that LRC utilizes the
class structure information and classifies more accurately if
the assumption is consistent with the subspace structure.
(3)
 Compared with other feature extraction methods, RDA is the
most suitable methods for LRC. As can be seen from
Tables 3 and 4, the framework of RDA plus LRC continuously
outperforms other combinations. We observe that the fea-
tures extracted by RDA are very discriminative. As demon-
strated in Figs. 4–7, RDA achieves much higher recognition
rates using very fewer features. It means LRC can utilize the
RDA features effectively. Although MLREF is similar to RDA, it
remains unclear how to match the parameters of MLREF and
MLREC to achieve optimal performances. Without theoretical
guidance, the manually selected parameters may probably
lead to the performance loss.
(4)
 From the experimental results on the YALE-B database, we find
that the NN classifier may not be robust for RDA under
illumination conditions. The YALE-B database contains a wide
range of illumination change from different directions. As the
results show, with the growth of training number, the recogni-
tion rates get worse. Technically, minimizing the intra-class
reconstruction error usually can not guarantee that a sample
and its nearest neighbor are in the same class. Therefore, the NN
classifier may not work effectively in the RDA subspace.
6. Conclusions

In this paper, a new method is proposed for feature extraction.
If the reconstruction error is defined as the point-to-class dis-
tance, the ideas of RDA and LDA are exactly the same. Thus RDA
can be viewed as another form of LDA from the reconstructive
view. The projections of RDA uncover and separate the subspaces
corresponding to different classes in the reduced subspace. RDA
considers both the intra-class reconstruction scatter and the
inter-class reconstruction scatter at the same time and seeks to
find the projections maximizing the ratio of the inter-class
reconstruction scatter and the intra-class reconstruction scatter.
The experimental results on three popular face image databases
and one FKP database demonstrate RDA plus LRC is more effective
than other combinations of DR methods and classifications.

Compared with LDA, RDA has two significant advantages:
(1)
 RDA has natural connections to classifiers as RDA is induced
from LRC. LRC can fully utilize the characteristic of the RDA
subspace. RDA and LRC can be seamlessly integrated into a
pattern recognition system.
(2)
 RDA overcomes the drawback of LDA: RDA can extract more
features than LDA.
Just like LDA, RDA also suffers from the small sample size
problems. To avoid singularity, in this paper, we use PCA to
reduce the dimension of the original space first. However, this
step may lose some null space information for discrimination. In
the future work, we aim to take full advantage of the null space to
further improve the performance of RDA.
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