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Abstract. Based on the local patch concept, we proposed locally recon-
structive patch alignment (LRPA) for dimensionality reduction. For each
patch, LRPA aims to find the low-dimensional subspace in which the
reconstruction error of the within-class nearest neighbors is minimized
and the reconstruction error of the between-class nearest neighbors is
maximized. LRPA preserves the local structure hidden in the high-
dimensional space. More importantly, LRPA has natural connections
with linear regression classification (LRC). While LRC uses reconstruction
errors as the classification rule, a sample can be classified correctly when
the within-class reconstruction error is minimal. The goal of LRPAmakes it
cooperate well with LRC. The experimental results on the extended Yale B
(YALE-B), AR, PolyU finger knuckle print, and the palm print databases
demonstrate LRPA plus LRC is an effective and robust pattern-recognition
system. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1
.OE.51.7.077208]
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1 Introduction
Nowadays, dimensionality reduction (DR) techniques have
drawn considerable attention in image processing and pat-
tern recognition fields. DR is to find a meaningful low-
dimensional representation of high dimensional data. With
respect to pattern recognition, DR is an effective way to over-
come the “curse of dimensionality.”1 And, more importantly,
it reveals the distinctive features from the original data for
pattern matching.

Among the existing DR techniques, principle component
analysis (PCA)2 and linear discriminant analysis (LDA)3

are two well-known tools in the appearance-based
approaches. While PCA achieves simply object reconstruc-
tion, LDA optimizes the low-dimensional representation of
the objects with focus on the most discriminant feature
extraction. It is generally believed that, when it comes to
solving problems of pattern classification, LDA-based
algorithms outperform PCA based ones.3,4 Unfortunately,
it has been pointed out that drawbacks still exist in
LDA. For example, LDA suffers from the small sample
size problem when the within-class scatter matrix is singu-
lar. Moreover, LDA can only extract at most c − 1 features
(c is the number of total classes), which is suboptimal for
many applications. In the past decades, numerous LDA
variants5–10 have been developed to solve the limitations
of LDA.

Despite of the drawbacks mentioned above, LDA and its
extensions fail to discover the nonlinear structure hidden in
the high-dimensional non-Gaussian distributed data, since
they are based on global Euclidean structure. Many nonlinear

techniques11–18 have been proposed to discover the nonlinear
structure of the manifold. Among them, locality preserving
projections14 and neighborhood preserving embedding
(NPE)13 are two widely used tools for DR. They aim to
preserving the local information in the low-dimensional
subspace.

Recently, an interesting work called discriminative local-
ity alignment (DLA)19,20 was proposed for DR. Generally,
the main idea of DLA is described as two steps. First, dis-
criminative information is imposed over patches, each of
which is associated with one sample and its neighbors. Sec-
ond, the alignment trick is used to align all of the part opti-
mizations to the whole optimization. Although DLA shows
impressive results, we find that the performance of DLA is
sensitive to the variations of the model parameters.

Based on linear reconstruction, we propose locally recon-
structive patch alignment (LRPA) for DR. By maximizing
the local between-class reconstruction error and minimizing
the local within-class reconstruction error simultaneously,
LRPA preserves the local information for classification.
More importantly, LRPA has natural connections with linear
regression-based classification (LRC).21 As we know, LRC
assumes a sample belongs to the class with the minimum
reconstruction error. Therefore, only the sample with the
minimum within-class reconstruction error can be classified
correctly. Since LRPA aims to find the projections by which
the within-class reconstruction error is minimal, we can
expect that LRC can be more effective in the LRPA’s
subspace.

The rest of the paper is organized as follows. Related
works are reviewed in Sec. 2. In Sec. 3, LRPA is described
in detail. In Sec. 4, the experiments are presented on the
well-known databases to demonstrate the effectiveness and0091-3286/2012/$25.00 © 2012 SPIE
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robustness of the proposed method. Finally, conclusions are
drawn in Sec. 5.

2 Discriminative Locality Alignment
DLA aims to extract discriminative information from
patches. To achieve this goal, one patch is first built for each
sample. Each patch includes a sample and its within-class
nearest samples and its between-class nearest samples.
Then an objective function is designed to preserve the local
discriminative information of each patch. Finally, all the
part optimizations are integrated together to form a global
coordinate according to the alignment trick.22 The projec-
tion matrix can be obtained by solving a standard Eigen
decomposition problem.

2.1 Part Optimization

Suppose we have a set of samples X ¼ ½x1; x2; : : : ; xN � ∈
Rd×N from c different classes (where X ¼ dataset in orginal
space dataset in original space). For a given sample xi (where
xi ¼ i’th sample of X), its k1 (where k ¼ number of neigh-
bors) within-class nearest samples and k2 between-class
nearest samples are defined as xi1 ; xi2 : : : ; xik1 , and xi1 ;
xi2 : : : ; xik2 , respectively. The local patch for the sample xi
is constructed by putting the sample xi, its k1 within-class
nearest samples and k2 between-class nearest samples
together, i.e. (where Xi ¼ i’th patch),

Xi ¼ ½xi; xi1 ; xi2 ; : : : ; xik1 ; xi1 ; xi2 ; : : : ; xik2 �: (1)

For each patch, the corresponding output in the low-
dimensional space is:

Yi ¼ ½yi; yi1 ; yi2 ; : : : ; yik1 ; yi1 ; yi2 ; : : : ; yik2 �: (2)

In the low-dimensional space, we expect that distances
between the given sample and its within-class samples are
as small as possible, while distances between the given sam-
ple and its between-class samples are as large as possible.
So we have

yi ¼ arg min
Xk1
j¼1

kyi − yijk2

yi ¼ arg min
Xk2
p¼1

kyi − yipk2:
(3)

Since the patch formed by the local neighborhood can be
regarded approximately linear, we formulate the part discri-
minator by using the linear manipulation as follows:

yi ¼ arg min

�Xk1
j¼1

kyi − yijk2 − β
Xk2
p¼1

kyi − yipk2
�
; (4)

where β ∈ ½0; 1� (where β ¼ scaling factor) is the penalty
parameter. Define the coefficients vector (where wt ¼
within-class reconstruction weight vector)

wi ¼
�
1; : : : ; 1
zfflfflfflffl}|fflfflfflffl{k1

;−β; : : : ;−β
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{k2 �T

(5)

then Eq. (4) reduces to:

arg min

�Xk1
j¼1

kyi − yijk2wiðjÞ

−
Xk2
p¼1

kyi − yipk2wiðpþ k1Þ
�

¼ arg min

�Xk1þk2

j¼1

kyFið1Þ − yFiðjþ1Þk2wiðjÞ
�

¼ arg min trðYiLiYT
i Þ;

(6)

where trð⋅Þ denotes the trace operator,

Li ¼
�Pk1þk2

j¼1 wiðjÞ −wT
i

−wi diagðwiÞ
�

(7)

and Fi ¼ fi; i1; : : : ik1 ; : : : ; i1; : : : ; ik2g is the index set for
the i’th patch.

2.2 Whole Alignment

After the part optimization step, we unify the optimizations
together as a whole one by assuming that the coordinate for
the i’th patch Yi ¼ ½yi; yi1 ; yi2 ; : : : ; yik1 ; yi1 ; yi2 ; : : : ; yik2 � is
selected from the global coordinate Y ¼ ½y1; y2; : : : ; yN �
(where Y ¼ dimension-reduced dataset), such that

Yi ¼ YSi; (8)

where Si ∈ RN×ðk1þk2þ1Þ is the selection matrix and an entry
is defined as (where Si ¼ selection matrix):

ðSiÞpq ¼
�
1 if p ¼ Fifqg
0 else

: (9)

Then Eq. (6) can be rewritten as

arg min
Y

trðYSiLiSTi Y
TÞ: (10)

By summing over all the part optimizations described as
Eq. (10), we can obtain the whole alignment as

arg min
Y

XN
i¼1

trðYSiLiSTi Y
TÞ ¼ arg min

Y
trðYLYTÞ; (11)

where L ¼ P
N
i¼1 SiLiSTi ∈ RN×N is the alignment matrix.

It is obtained based on an iterative procedure (where
Li ¼ representation of part optimization):

LðFi; FiÞ←LðFi; FiÞ þ Li (12)

for i ¼ 1; 2; : : : ; N (where N ¼ size of the dataset) with the
initialization L ¼ 0. Note that LðFi; FiÞ is a submatrix
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constructed by selecting certain rows and columns from
L according to the index set Fi. Therefore, Eq. (12) only
updates a submatrix of L determined by the index set Fi in
each iteration.

To obtain the linear and orthogonal projection matrix P
(where P ¼ projection matrix), such as Y ¼ PTX, Eq. (11)
is deformed as follows:

arg min
P

trðPTXLXTPÞ; s:t: PTP ¼ I: (13)

The transformation matrix P that minimizes the objective
function is given by the minimum eigenvalue solution to
the standard eigenvalue problem,

XLXTP ¼ λP: (14)

3 Locally Reconstructive Patch Alignment

3.1 Motivation

Let X ¼ ½x1; x2; : : : ; xN � ∈ Rd×N be a training set from
c classes (where c ¼ number of classes). Suppose Xw

i ¼
½xi1 ; xi2 ; : : : ; xik1 � (where Xw

t ¼within-class nearest neighbor
set) is the within-class nearest neighbor set of xi and Xb

i ¼
½xi1 ; xi2 ; : : : ; xik2 � (where Xb

i ¼ between class nearest neigh-
bor set) is the between-class nearest neighbor set of xi. Thus
the patch of xi can be represented as Xi ¼ ½xi;Xw

i ;X
b
i �. In the

algorithm of DLA, the distance from a sample xi to its near-
est neighbor xj is defined as the Euclidean distance, i.e.
(where d ¼ dimension of xi),

dðxi; xjÞ ¼ kxi − xjk2: (15)

Then the total distance from xi to its within-class nearest
neighbors can be regarded as the distance from xi to its
own class

dwi ¼
Xk1
j¼1

kxi − xijk2: (16)

Recent studies21,23,24 have shown that, as a distance measure-
ment, the linear reconstruction error is more robust than the
Euclidean distance. Instead of using the Euclidean distance,
we employ the reconstruction error to investigate the dis-
tance from a sample to its nearest neighbors. Thus the dis-
tance from xi to its within-class neighbors and can be defined
as follows:

dwi ¼
����xi −Xk1

j¼1

xijw
j
i

����
2

; (17)

where wj
i is the within-class reconstruction weight.

We can rewrite Eq. (17) using the matrix form:

dwi ¼
����xi −Xk1

j¼1

xijw
j
i

����
2

¼ kxi − Xw
i wik2; (18)

where wi ¼ ½w1
i ; w

2
i ; : : : ; w

k1
i �T is the within-class recon-

struction weight vector.

The optimal within-class reconstruction weight vector can
be obtained by least-squares estimation (LSE):25

wi ¼ ½ðXw
i ÞTXw

i �−1ðXw
i ÞTxi: (19)

From the geometrical view, minimizing the within-class
reconstruction error in Eq. (17) is finding a point x̂, which
is closest to xi in the within-class nearest neighbor’s space
(the space spanned by the within-class nearest neighbors).
Actually, x̂ is the projection of xi onto the within-class near-
est neighbor’s space. And the within-class reconstruction
error dwi is actually the distance from xi to the within-
class nearest neighbor’s space.

Similarly, we can define the distance from xi to its
between-class neighbors

dbi ¼
����xi −Xk2

p¼1

xij w̃
p
i

����
2

¼ kxi − Xb
i w̃ik2; (20)

where w̃i ¼ ½w̃1
i ; w̃

2
i ; : : : w̃

k2
i �T (where w̃i ¼ between-class

reconstruction weight vector) is the between-class recon-
struction weight vector, which can be obtained by Eq. (21)

w̃i ¼ ½ðXb
i ÞTXb

i �−1ðXb
i ÞTxi: (21)

The between-class reconstruction error dbi is actually the
distance from xi to the between-class nearest neighbor’s
space.

3.2 Part Optimization

Our goal is to find a low-dimensional linear embedding of
the data by virtue of the linear transformation

yi ¼ PTxi; where P ¼ fφi;φ2; : : :φmg: (22)

In the low-dimensional subspace, we expect that distances
from samples to their corresponding within-class nearest
neighbor’s space are as small as possible, while distances
from samples to their corresponding between-class nearest
neighbor’s space are as large as possible.

To achieve this goal, for each patch in the low-
dimensional subspace, the distance from Yi to the within-
class nearest neighbor’s space should be as small as possible,
so we have:

arg min
yi

����yi −Xk1
j¼1

yijw
j
i

����
2

: (23)

Meanwhile, the distance from yi to the between-class nearest
neighbor’s space should be as large as possible, so we have:

arg max
yi

����yi −Xk2
p¼1

yip w̃
p
i

����
2

: (24)

We can unify the objective function in Eqs. (23) and (24) as
follows:
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arg min
yi

�����yi −Xk1
j¼1

yijw
j
i

����
2

− β

����yi −Xk2
p¼1

yip w̃
p
i

����
2

�
; (25)

where β ∈ ½0; 1� is the scale parameter to unify the different
measures of the within-class distance and the between-class
distance.

Assume Y ¼ ½yi; yi1 ; yi2 ; : : : ; yik1 ; yi1 ; yi2 ; : : : ; yik2 � is the
patch of xi in the low-dimensional subspace. Let w̃i ¼
½w̃1

i ; w̃
2
i ; : : : w̃

k1
i �T and w̃i ¼ ½w̃1

i ; w̃
2
i ; : : : w̃

k2
i �T be the within-

class reconstruction weight vector and the between-class
reconstruction weight vector. The objective function in
Eq. (25) can be rewritten as:

����yi −Xk1
j¼1

yijw
j
i

����
2

− β

����yi −Xk2
p¼1

yij w̃
p
i

����
2

¼ kYie − Yiωik2 − βkYie − Yiω̃ik2
¼ trððYie − YiωiÞðYie − YiωiÞT
− βðYie − Yiω̃iÞðYie − Yiω̃iÞTÞ

¼ trðYi½ðe − ωiÞðe − ωiÞT − βðe − ω̃iÞðe − ω̃iÞT �YT
i Þ

¼ trðYiLiYT
i Þ; (26)

where

Li ¼ ðe − ωiÞðe − ωiÞT − βðe − ω̃iÞðe − ω̃iÞT (27)

e ¼
�
1; 0; : : : 0
zfflfflffl}|fflfflffl{k1þk2 �T

, ωi ¼
�
0; wi; 0; : : : ; 0

zfflfflfflffl}|fflfflfflffl{k2 �T
, and

ω̃i ¼
�
0; : : : ; 0
zfflfflfflffl}|fflfflfflffl{k1þ1

; w̃i;

�T
.

It is easy to understand that the vectors e, ωi and ω̃i encode
the contribution of each column of Yi during the reconstruc-
tion step.

3.3 Whole Alignment

In the whole alignment procedure, LRPA does the same steps
as DLA. Finally, the optimal solution of LRPA can be
obtained by solving the Eigenvectors of Eq. (28) correspond-
ing with the smallest eigenvalues.

XLXTP ¼ λP; (28)

where

L ¼
XN
i¼1

SiLiSTi ∈ RN×N (29)

ðSiÞpq ¼
�
1 if p ¼ Fifqg
0 else

(30)

and Fi ¼ fi; i1; : : : ik1 ; : : : ; i1; : : : ; ik2g is the index set for
the i’th patch.

3.4 Algorithm of LRPA

The procedure of LRPA is summarized in Table 1.

4 Experiments
To evaluate the performance of the proposed method, we
compare it with four DR methods (KPCA,26 LDA, NPE,
and DLA) over two classifiers, i.e., nearest neighbor classi-
fier (NNC)27 and LRC, on four well-known databases. The
details of the databases are summarized in Table 2. For effi-
ciency, on the four databases, PCA is first applied to reduce
the dimensionality. Then the experiments are performed on
the 150-dimensional PCA subspace. On the YALE-B, AR,
and finger knuckle print (FKP) databases, all the experiments
are repeated 50 times independently. On the PolyU palm
print database, we only compare the palm print images of
the two sessions once.

4.1 Face Recognition

4.1.1 Experiments on the YALE-B database

The YALE-B database28 consists of 2414 frontal face images
of 38 subjects under various lighting conditions. The data-
base was divided in five subsets: subset 1 consisting of

Table 1 The algorithm of LRPA.

Input: Sample matrix X ¼ ½x1; x2 : : : ; xN �, the scale parameter β, the
number of the within-class nearest neighbors k1 and the number of
the between-class nearest neighbors k2.

Output: Transform matrix PLRPA

1. Project the training samples into a PCA subspace spanned by its
leading eigenvectors: X̂ ¼ ½x̂1; x̂2; : : : ; ^xN � ¼ PT

PCAX

2. For each sample x̂ i , find its k1 within-class nearest neighbors Xw
i

and k2 between-class nearest neighbors Xb
i . Then construct the patch

Xi ¼ ½x̂ i ;Xw
i ;X

b
i �

3. Compute the within-class reconstruction weight vector wi by
Eq. (19) and between-class reconstruction weight vector w̃ i by
Eq. (21).

4. Compute Li by Eq. (27) and iteratively calculate L by Eq. (29).

5. Solve the generalized eigenvectors of X̂LX̂TP ¼ λP and construct
the projections P ¼ fφ1;φ2; : : : ;φmg corresponding to them smallest
eigenvalues.

6. Output PLRPA ¼ PPCAP

Table 2 Details of the four databases.

Database Size

Number
of

classes

Number of
samples
per class

Number of
training sample

per class

YALE-B 32 × 32 38 64 10

AR 50 × 40 120 26 5

FKP 55 × 110 100 12 5

Palmprint 64 × 64 100 6 3
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266 images (seven images per subject) under nominal light-
ing conditions was used as the gallery. Subsets 2 and 3, each
consisting of 12 images per subject, characterize slight-to-
moderate luminance variations, while subset 4 (14 images
per person) and subset 5 (19 images per person) depict severe
light variations. The images are also grayscale and normal-
ized to a resolution of 32 × 32 pixels.

Sample images of one person from the YALE-B face
database are shown in Fig. 1. The maximal recognitions
and the standard deviations across 50 tests are listed in
Table 3. And the recognition rates versus the dimensions
with two classifications are illustrated in Figs. 2 and 3.

4.1.2 Experiments on the AR database

The AR face database29 contains over 4,000 color face
images of 126 people (70 men and 56 women), including
frontal views of faces with different facial expressions, light-
ing conditions and occlusions. The pictures of most persons
were taken in two sessions (separated by two weeks). Each
section contains 13 color images and 120 individuals (65
men and 55 women) participated in both sessions. The
images of these 120 individuals were selected and used in
our experiment. Only the full facial images were considered
here (no attempt was made to handle occluded face recogni-
tion in each session). We manually cropped the face portion
of the image and then normalized it to 50 × 40 pixels.

Sample images of one person from the AR face database
are shown in Fig. 4. The maximal recognition rates and the
standard deviations across 50 tests are listed in Table 4. And
the recognition rates versus the dimensions with two classi-
fications are shown in Figs. 5 and 6.

4.2 Finger Knuckle Print Recognition

In PolyU FKP database,30–32 FKP images were collected
from 165 volunteers, including 125 males and 40 females.
Among them, 143 subjects were 20 to 30 years old, and
the others were 30 to 50 years old. The samples were col-
lected in two separate sessions. In each session, the subject
was asked to provide six images for each of the left index
finger, the left middle finger, the right index finger, and
the right middle finger. Therefore, 48 images from four

Fig. 1 Sample images of one person from the YALE-B face database.

Fig. 2 Recognition rates curves of five methods plus NNC on the
YALE-B database.

Fig. 3 Recognition rates curves of five methods plus LRC on the
YALE-B database.

Table 3 The average maximal recognition rates on the YALE-B
database.

KPCA LDA NPE DLA LRPA

NNC 43.1� 1.0 80.0� 1.4 79.5� 2.1 78.3� 1.4 80.1� 1.4

Dimension 150 25 90 40 70

LRC 81.1� 1.1 84.1� 1.1 87.8� 1.5 89.4� 0.9 92.8� 0.7

Dimension 150 37 150 120 80
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fingers were collected from each subject. In total, the data-
base contains 7920 images from 660 different fingers. The
average time interval between the first and the second ses-
sions was about 25 days. The maximum and minimum
time intervals were 96 days and 14 days, respectively. All
the samples in the database are histogram equalized and
resized to 55 × 110.

Sample images of one person from the FKP database are
shown in Fig. 7. The maximal recognition rates and the stan-
dard deviations across 50 tests are listed in Table 5. And the

recognition rates versus the dimensions with two classifica-
tions are shown in Figs. 8 and 9.

4.3 Palm Print Recognition

The PolyU palm print database33 contains 600 gray-scale
images of 100 different palms with six samples for each
palm. Six samples from each of these palms were collected
in two sessions, where the first three were captured in the
first session and the other three in the second session.

Fig. 4 Sample images of one person from the AR face database.

Fig. 5 Recognition rates curves of five methods plus NNC on the AR
database.

Fig. 6 Recognition rates curves of five methods plus LRC on the AR
database.

Table 4 The average maximal recognition rates on the AR database.

KPCA LDA NPE DLA LRPA

NNC 57.6� 1.1 88.6� 1.0 86.9� 0.8 89.4� 0.8 90.1� 0.9

Dimension 150 110 120 110 70

LRC 71.1� 1.3 90.4� 1.1 92.2� 0.7 92.8� 0.8 93.3� 0.8

Dimension 150 110 120 120 80
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The average interval between the first and the second
sessions is two months. The images were resized to
64 × 64 pixels and preprocessed using histogram equaliza-
tion. Figure 10 shows some sample images of the two
sessions.

According to the protocol of this database, the palm print
images are divided into two groups: one group is made up of
three images of every palm from one session for a total of
300 images; the other group is made up of three images of
every palm from the other session for a total of 300 images.
Thus, for each palm class, there are three training samples
and three test samples. The recognition rates are listed in
Table 6. The recognition rates versus the dimensions with
two classifications are shown in Figs. 11 and 12.

4.4 Parameter Sensitivity Analysis

In the model of DLA and LRPA, there are three parameters:
β (the scale parameter), k1 (the number of the within-class
nearest neighbors), and k2 (the number of the between-
class nearest neighbors). In this subsection, we will investi-
gate the effects of the three model parameters on the recog-
nition rates in the validation phase based on the YALE-B
database over two classifications (NNC and LRC). The
selected subspace dimension was fixed to 80. In this experi-
ment, 20 images of each person are used for training. There-
fore, 1 ≤ k1 ≤ 19, 1 ≤ k2 ≤ 740, and 0 ≤ β ≤ 1.

To evaluate the effects of the three model parameters, we
fix two model parameters each time. Then we vary the third
parameter to obtain the recognition rates. First, by fixing k1
and k2 to arbitrary values, we can obtain the recognition rate
curve with respect to β as shown in Fig. 13. We observe that

DLA achieves the highest recognition rates when β ¼ 0,
which means the between-class information may be unhelp-
ful to the performance of DLA. Differently, LRPA achieves
the highest recognition rates when β ¼ 2, which means
LRPA utilizes the between-class information effectively.
Meanwhile, with the increment of β, we find that LRPA

Fig. 7 Sample images of the right index finger from one individual.

Fig. 8 Recognition rates curves of five methods plus NNC on the
FKP database.

Fig. 9 Recognition rates curves of five methods plus LRC on the
FKP database.

Table 5 The average maximal recognition rates on the FKP database.

KPCA LDA NPE DLA LRPA

NNC 86.8� 1.2 83.5� 1.6 89.5� 1.5 86.8� 1.5 93.0� 1.3

Dimension 150 30 30 150 50

LRC 91.6� 1.4 92.4� 1.3 93.8� 1.3 93.8� 1.3 94.0� 1.2

Dimension 50 30 120 120 65
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is more stable than DLA, and the difference of their recogni-
tion rates is not significant.

Secondly, we fix β ¼ 0.2 and set k2 to arbitrary value.
Then we compute the recognition rates against the variation
of k1. The recognition rate curves with respect to k1 are
drawn in Fig. 14. From Fig. 14, we find that the performance
of LRPA plus NNC is not stable with the variation of k1.

Third, we fix β ¼ 0.2 and k1 ¼ 5. Then we show the
recognition rate curves with respect to k1 ¼ 5 in Fig. 15.

4.5 Discussion

Based on the experimental results, we can draw the following
conclusions:

(1) LRPA plus LRC outperforms other combinations.
The experimental results in Tables 3–6 shows that
LRPA plus LRC achieves higher recognition rates
than those of other combinations.

(2) LRC is more suitable for LRPA than NNC. As can be
seen from Fig. 14, the recognition rates of LRPA plus
LRC are insensitive to the number of within-class
nearest neighbors, whereas the recognition rates of
LRPA plus NNC decrease severely with the growth
of number of within-class nearest neighbors. Mean-
while, from Figs. 2 and 3, Figs. 5 and 6, Figs. 8 and 9,

Fig. 10 Sample images of the two sessions in the PolyU palmprint
database.

Table 6 The average maximal recognition rates on the PolyU palm-
print database.

KPCA LDA NPE DLA LRPA

NNC 88 97.0 96.7 96.7 96.3

Dimension 100 99 100 110 100

LRC 87.3 97.3 98.3 98.3 99.3

Dimension 150 99 100 120 90

Fig. 11 Recognition rates curves of five methods plus NNC on the
PolyU palmprint database.

Fig. 12 Recognition rates curves of five methods plus LRC on the
PolyU palmprint database.

Fig. 13 Recognition rates versus scale parameter.
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and Figs. 11 and 12, we observe that the recognition
rates of LRPA plus LRC are higher and more stable
than those of LRPA plus NNC with the increment of
dimensions. Technically, minimizing the reconstruc-
tion error of the within-class nearest neighbors cannot
promise the given sample, and its nearest neighbor
belong to the same class. Differently, LRC estimates
the label of a sample based on the reconstruction error
of each class. Therefore, minimizing the reconstruc-
tion error of within-class nearest neighbors is helpful
to LRC.

(3) LRPA plus LRC is more robust to the variations of
the model parameters. As can be seen from
Figs. 13 through 15, the recognition rates of LRPA
plus LRC vary in a very small range. Moreover,
we notice that the between-class information may
be not helpful to DLA. From Figs. 13 and 15, we
can see that the recognition rates of DLA plus

LRC or NN achieves the highest recognition rates
when the scale parameter and the number of
between-class nearest neighbors equals to zero.
And the recognition rates of DLA decrease with
the increment of scale parameter and the number
of between-class nearest neighbors.

5 Conclusions
This paper introduces a new method called “locally recon-
structive patch alignment for dimensionality reduction.”
Based on the local patch concept, LRPA minimizes the
within-class nearest neighbor reconstruction error and max-
imizes the within-class nearest neighbor reconstruction error
of the patches simultaneously. Compared with DLA, LRPA
has the following advantages:

(1) LRPA has natural connections with LRC since both
of LRPA and LRC are focus on reconstruction errors.

(2) LRPA plus LRC is more robust to the variations of
parameters.

The experimental results on the YALE-B, AR, FKP, and
palm print databases demonstrate the effectiveness and
robustness of the proposed method.
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