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In this paper, we propose an effective supervised dimensionality reduction technique, namely discrimi-
nant sparsity neighborhood preserving embedding (DSNPE), for face recognition. DSNPE constructs graph
and corresponding edge weights simultaneously through sparse representation (SR). DSNPE explicitly
takes into account the within-neighboring information and between-neighboring information. Further,
by taking the advantage of the maximum margin criterion (MMC), the discriminating power of DSNPE
is further boosted. Experiments on the ORL, Yale, AR and FERET face databases show the effectiveness
of the proposed DSNPE.
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1. Introduction

Face recognition has attracted many researchers in the area of
pattern recognition, machine learning, and computer vision be-
cause of its immense application potential. Numerous methods
have been proposed in the last two decades [1–10]. One of the
most successful and well-studied techniques to face recognition
is the appearance-based method. In an appearance-based tech-
nique, a face image with size w � h is perceived as a point in a
w � h dimensional image space. In practice, however, these
w � h-dimensional spaces are too large to allow robust and fast
recognition. Dimensionality reduction is an effective approach to
deal with this problem. The most well-know dimensionality reduc-
tion methods are principal component analysis (PCA) [11] and
linear discriminant analysis (LDA) [12].

PCA is based on the computation of low-dimensional represen-
tation of high-dimensional data that maximizes the total scatter.
However, PCA does not utilize the class label information. LDA
aims to better discriminate patterns of different classes by search-
ing the projection axes on which the data points of different classes
are far from each other, while constraining the data points of the
same class to be as close to each other as possible. Unfortunately,
LDA cannot be applied directly to small size sample (SSS) problem
because the within-class scatter matrix is singular [13]. To avoid
the singularity problem of LDA, Li et al. [14] used the difference
of both between-class scatter and within-class scatter as
ll rights reserved.
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discriminant criterion, called maximum margin criterion (MMC).
MMC has the advantages of effectiveness and simplicity.

Both PCA and LDA have been successfully applied to some linear
data. However, they fail to explore the essential structure of the
data with non-linear distribution. Kernel trick is one commonly
used approach to handle non-linearity structure in data. The key
idea of kernel methods is to map the original data to a higher-
dimensional feature space where the inner products can be com-
puted by a kernel function without knowing the non-linear map-
ping function explicitly [15,16]. The widely used kernel
techniques are kernel principal component analysis (KPCA) [17]
and kernel Fisher discriminant analysis (KFD) [18], which can be
viewed as the kernel version of PCA and LDA, respectively. How-
ever, how to select kernel and assign optimal kernel parameter is
generally difficult. In most of the cases, experience still plays an
important role. In [19–23] some methods based on Gabor filters
have been introduced. These methods are robust to illumination
changes and varying pose.

Recently, a number of manifold learning algorithms have been
developed. Representative ones include locally linear embedding
(LLE) [24], Isomap [25], Laplacian eigenmaps (LE) [26], and local
tangent space alignment (LTSA) [27]. Based on the assumption of
the local linearity, LLE first constitutes local coordinates with the
least constructed cost and then maps them to a global one. Isomap
determines a low-dimensional representation of the data set that
aims to preserve geodesic distances between pairs of data points.
LE preserves proximity relationships by manipulations on an
undirected weighted graph, which indicates neighbor relations of
pairwise measurements. LTSA uses the local tangent space to
represent the local geometry of the essential manifold structure.

http://dx.doi.org/10.1016/j.knosys.2012.02.014
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Unfortunately, all of these algorithms are plagued by the out-of-
sample problem [28]. One common response to this problem is
to apply a linearization procedure to construct explicit maps over
new measurements. For example, LPP [29] is a linearization version
of LE; neighborhood preserving embedding (NPE) [30] is a lineari-
zation version of LLE; isometric projection (IsoProjection) [31] can
be seen as a linearized Isomap; and linear local tangent space
alignment (LLTSA) [32] is a linearization of LTSA.

Recently, Yan et al. [33] introduced a general framework for
dimensionality reduction, called graph embedding, where a large
number of popular dimensionality reduction, e.g., PCA, LDA, Iso-
map, LLE, and Laplacian Eigenmap, could be considered as special
cases within the framework. Based on the graph embedding, some
discriminant manifold learning methods, e.g. marginal Fisher anal-
ysis (MFA) [33], neighborhood preserving discriminant embedding
(NPDE) [34] and locality discriminanting projection (LDP) [35],
have been proposed to improve the recognition performance. As
a result, graph becomes the heart of the most dimensionality
reduction methods. However, the way to establish high-quality
graphs is still an open problem [36]. At present, there exist two
popular ways for graph construction, one of which is the k-near-
est-neighbor, and the other is the e-ball based method. Motivated
by the recent development of sparse representation (SR) [37,38],
some research works, e.g. sparsity preserving projections (SPP)
[39] and L1-graph [40], attempted to construct graph and corre-
sponding edge weights simultaneously through SR. SPP firstly con-
structs an ‘‘adjacent’’ weight matrix of the data set based on SR,
and then evaluate the low-dimensional embedding of the data to
best preserve such weight matrix. Although SPP is effective in
many domains, it is unsupervised and its unsupervised nature re-
stricts its discriminating capability.

In this paper, we propose an effective supervised manifold
learning algorithm, called discriminant sparsity neighborhood pre-
serving embedding (DSNPE). The proposed DSNPE incorporates
graph embedding and MMC for data analysis. Similar to SPP,
DSNPE constructs graph and corresponding edge weights simulta-
neously through SR. More importantly, DSNPE explicitly takes into
account the within-neighboring information, which is modeled by
the sparse reconstruction weights of the samples from the same
class, and between-neighboring information, which is modeled
by the sparse reconstruction weights of the neighboring samples
from different classes.

The organization of the rest of this paper is as follows. In Section
2, we review briefly NPE, sparse representation and SPP. In Section
3, we propose the discriminant sparsity neighborhood preserving
embedding (DSNPE) and describe the proposed method in detail.
In Section 4, we compare DSNPE with some related works. The
experimental results are presented in Section 5. Conclusions are
made in Section 6.
2. Related works

In this section, we will firstly review briefly principal compo-
nent analysis since PCA is the most popular dimensionality reduc-
tion method and it is often used to transform the original image
into a lower dimensional subspace to avoid SSS problem. Then
we will review briefly neighborhood preserving embedding
(NPE), sparse representation (SR) and sparsity preserving projec-
tions (SPP) since our proposed DSNPE are stemmed from these
there methods.
2.1. Principal component analysis (PCA)

Let fxi 2 Rmji ¼ 1; . . . ;ng represents the input data as an m-
dimensional data point in an Euclidean vector space, and the
projection vector is fyi 2 Rdji ¼ 1; . . . ;ng, where d�m. Assume
that the original data in X = [x1,x2, . . . ,xn] is partitioned into c clas-
ses as X = [X1,X2, . . . ,Xc], where Xi 2 Rm�ni contains data points from
the ith class and

Pc
i¼1ni ¼ n. The objective function of PCA is de-

fined as follows:

max
kak¼1

Pn
i¼1
ðyi � �yÞ2 ð1Þ

where y = aTxi and �y is the mean of f�ygn
i¼1. Eq. (1) can be rewritten as

max
kak¼1

aTRa ð2Þ

where R ¼ 1
n

Pn
i¼1ðxi � �xÞðxi � �xÞT is the sample covariance matrix,

here �x is the mean of all training samples. The eigenvectors of R
corresponding to the largest d eigenvalues span the optimal sub-
space of PCA.

2.2. Neighborhood preserving embedding (NPE)

NPE, which is based on simple geometric intuitions, i.e., each
data points and its neighbors lie on or close to a locally linear patch
of some underlying manifold [24], evaluates the affinity weight ma-
trix using local least squares approximation. The local approxima-
tion error in NPE is measured by minimizing the cost function [30]:

/ðWÞ ¼
P

i
xi �

P
j

Wijxj

�����
�����

2

ð3Þ

under two constraints: a sparseness constraint, i.e. Wij = 0 if xi and xj

are not neighbors, and an invariance constraint, i.e.
P

jWij ¼ 1. A
reasonable criterion for choosing a ‘‘good’’ projection is minimizing
the cost function [30]:

/ðaÞ ¼
P

i
aT xi �

P
j

WijaT xj

�����
�����

2

ð4Þ

By removing an arbitrary scaling factor, minimizing Eq. (4) leads to

min
a

aT XMXT a
aXXT a

ð5Þ

where M = (I �W)T(I �W) is a symmetric, and semi-positive defi-
nite matrix, I is an identity matrix.

Using Lagrange multipliers and it leads to the following general-
ized eigenvector problem:

XMXT a ¼ kXXT a ð6Þ

Let the column vectors a1, a2, . . ., ad be the solutions of Eq. (6), or-
dered according to their eigenvalues, k1 6 k2 6 � � �kd, and
A ¼ ½a1;a2; . . . ;ad� 2 Rm�d. Thus, the embedding is as follows:

xi ! yi ¼ AT xi ð7Þ

The details of theoretical justification about NPE can be found in
[30].

2.3. Sparse representation (SR)

Suppose we have an underdetermined system of linear equa-
tions: x = Xs, where x 2 Rm is the vector to be approximated,
s 2 Rn is the coefficients vector, X ¼ ½x1;x2; . . . ;xn� 2 Rm�n is the
overcomplete dictionary with n bases. The goal of SR is to represent
x using as few entries of X as possible, which can be obtained by
solving the following optimization problem:

min
s
ksk0; s:t: x ¼ Xs ð8Þ

where k k0 is the ‘0-norm which is equal to the number of non-zero
components in a vector and s.t. stands for subject to. Unfortunately
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it is NP-hard to find the sparsest solution of Eq. (8). Recently results
[37,41] reveal that if the solution is sparse enough, the solution to
the ‘0-minimization problem is equal to the solution to ‘1-minimi-
zation problem. Then the ‘0-minimization problem (8) is equal to
the following ‘1-minimization problem:

min
s
ksk1; s:t: x ¼ Xs ð9Þ

where k k1 is the ‘1-norm.1 In many practical problems, the signal x
may be noisy, and the following models can be used to estimate s
[37]

min
s
ksk1; s:t: kx� Xsk2 < e ð10Þ

where e is an error tolerance, or

min
s
f

� � s
f

� �����
����

1

; s:t: x ¼ ½X I �
s
f

� �
ð11Þ

where I is an m-order identity matrix and f 2 Rm is the noise term or
error term.

2.4. Sparsity preserving projections (SPP)

SPP [39] firstly seeks a sparse reconstructive weight vector si for
each xi through the following modified ‘1 minimization problem:

minsi
ksik1; s:t: xi ¼ Xsi; 1 ¼ 1T si ð12Þ

where si = [si,1, . . . ,si,i�1,0,si,i+1, . . . ,si,n]T is an n-dimensional vector
and 1 ¼ ½1;1; . . . ;1�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n

T 2 Rn is a vector of all ones. Note the ith ele-

ment in si is zero, which implies that the xi is removed from X. Then
the optimal weight vector ~si obtained from Eq. (12) is used to the
following objective function:

min
Pn
i¼1
kaT xi � aT X~sik ¼min aT XðI � SÞTðI � SÞXT a ð13Þ

where S ¼ ½~s1; ~s2; . . . ; ~sn�T . And, the optimal a of SPP are the eigen-
vectors of the following generalized eigenvalue problem2:

XðI � SÞTðI � SÞXT a ¼ kXXT a ð14Þ
3. Discriminant sparsity neighborhood preserving embedding
(DSNPE)

In this section, we propose an effective supervised manifold
learning algorithm, called discriminant sparsity neighborhood pre-
serving embedding (DSNPE). DSNPE considers two distinct sets of
sparse reconstruction weights that are computed from the face
data of the same and different persons. Then, both within-neigh-
borhood scatter and between-neighborhood scatter can be formu-
lated based on these sparse reconstruction weights. DSNPE seeks
optimal projections that maximize the difference of the trace of be-
tween-neighborhood scatter and the trace of within-neighborhood
scatter, which is similar to MMC.

3.1. Formulation of between-neighborhood scatter

In order to characterize the interclass separability, for each da-
tum xi in the sample set, we only use the samples which are not in
the same class as xi to reconstruct xi. Suppose xi belongs to the kth
1 Eq. (9) can be efficiently solved by standard linear programming using publicly
available packages such as ‘1-magic (http://www.acm.caltech.edu/l1magic) [42].

2 The Matlab function eig () can be used to calculate the generalized eigenvalue
problem.
class, then, similar to Eqs. (10) and (12), the sparse between-class
reconstructive weight vector sb

i for each xi can be achieved by solv-
ing the following ‘1-norm optimization problem

min
sb

i

sb
i

�� ��
1; s:t: xi � Xksb

i

��� ��� < e; 1 ¼ 1T sb
i ð15Þ

where matrix Xk ¼ ½X1;X2; . . . ;Xk�1;Xkþ1;Xc� 2 Rm�ðn�nkÞ, sb
i ¼

sb
i;1; s

b
i;2; . . . ; sb

i;n�nk

h iT
2 Rn�nk , e is the error tolerance and 1 2 Rn is a

vector of all ones. Note that e is generally fixed across various in-
stances of the problem [37] and thus in our experiments we simply
set it to 0.05 as in [37]. Let Wb denote the between-class weight ma-

trix. Since the coefficient sb
i ¼ sb

i;1; s
b
i;2; . . . ; sb

i;n�nk

h iT
for the ‘1 recon-

struction denotes the contribution of each sample which is not in

the same class as xi to reconstruct xi, then sb
i ¼ sb

i;1; s
b
i;2; . . . ; sb

i;n�nk

h iT

can reflect the close relation among xi and the samples which are
not in the same class as xi. So we use the coefficients sb

i;1; s
b
i;2;

. . . ; sb
i;n�nk

as the between-class graph weights. Note that

sb
i;1; . . . ; sb

i;n1þ���þnk�1
reflect the contributions of samples x1; . . . ;xn1þ���

þnk�1 to reconstruct xi and sb
i;n1þ���þnk�1þ1; . . . ; sb

i;n�nk
reflect the contri-

butions of samples xn1þ���þnkþ1
; . . . ;xn to reconstruct xi, then Wb

ij can
be defined as

Wb
ij ¼

sb
i;j; if 1 6 j 6 n1 þ � � � þ nk�1

0; if n1 þ � � � þ nk�1 þ 1 6 j 6 n1 þ � � � þ nk�1 þ nk

sb
i;j�nk

; if n1 þ � � � þ nk þ 1 6 j 6 n

8><
>:

ð16Þ

Note that the graph weights among xi and the samples which are in
the same class as xi are all zeros since we do not use the samples
which are in the same class as xi to reconstruct xi. In order to keep
the projected samples of different classes far from each other, sim-
ilar to Eq. (4), we maximize the following cost function

Pn
i¼1

aT xi �
Pn
j¼1

Wb
ija

T xj

�����
�����

2

ð17Þ

From Eq. (17) we can get

Pn
i¼1

aT xi �
Pn
j¼1

Wb
ija

T xj

�����
�����

2

¼ aT Pn
i¼1

xi � XWb
i

��� ���2
� �

a

¼ aT Pn
i¼1

xi � XWb
i

� 	
xi � XWb

i

� 	T
� �

a ð18Þ

where Wb
i is the ith column vector of Wb. Let ei be an n-dimensional

unit vector with the ith element 1, 0 otherwise, then Eq. (18) can be
formulated as

aT Pn
i¼1

xi � XWb
i

� 	
xi � XWb

i

� 	T
� �

a

¼ aT X
Pn
i¼1

ei �Wb
i

� 	
ei �Wb

i

� 	T
� �

XT a

¼ aT X
Pn
i¼1

eieT
i �Wb

i eT
i � ei Wb

i

� 	T
þWb

i Wb
i

� 	T
� �

XT a

¼ aT XMbXT a ð19Þ

where Mb = (I �Wb)T(I �Wb).

3.2. Formulation of within-neighborhood scatter

In order to characterize the intraclass compactness, for each da-
tum xi in the sample set, we only use the samples which are in the
same class as xi to reconstruct xi. Suppose xi belongs to the kth

http://www.acm.caltech.edu/l1magic


Fig. 1. Images of one person in ORL.

Fig. 2. The first ten basis vectors calculated by (a) PCA (Eigenfaces), (b) LDA
(Fisherfaces), (c) MMC (MMCfaces), (d) LPP (Laplacianfaces), (e) NPE (NPEfaces), (f)
SPP (SPPfaces), and (g) DSNPE (DSNPEfaces) using the cropped ORL database.

Table 1
The equation used in the DSNPE algorithm.

Number of equation Description

Eq. (15) minsb
i

sb
i

�� ��
1; s:t: xi � Xksb

i

��� ��� < e; 1 ¼ 1T sb
i

Eq. (16)

Wb
ij ¼

sb
i;j; if 1 6 j 6 n1 þ � � � þ nk�1

0; if n1 þ � � � þ nk�1 þ 1 6 j 6 n1 þ � � � þ nk�1 þ nk
sb

i;j�nk
; if n1 þ � � � þ nk þ 1 6 j 6 n

8><
>:

Eq. (20) minfkfk1 s:t: xi ¼ Xksw
i þ f; 1 ¼ 1T sw

i

Eq. (21)
Ww

ij ¼
0; 1 6 j 6 n1 þ � � � þ nk�1
sw

i;j�ðn1þ���þnk�1Þ; if n1 þ � � � þ nk�1 þ 1 6 j 6 n1 þ � � � þ nk�1 þ nk

0; if n1 þ � � � þ nk þ 1 6 j 6 n

8<
:
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class, then, similar to Eq. (12), we can obtain the sparse within-
class reconstructive weight vector sw

i for each xi by minimizing
the following object function

min
f
kfk1 s:t: xi ¼ Xksw

i þ f; 1 ¼ 1T sw
i ð20Þ

where sw
i ¼ sw

i;1; . . . ; sw
i;i�ðn1þ���þnk�1Þ�1;0; s

w
i;i�ðn1þ���þnk�1Þþ1; . . . ; sw

i;nk

h iT
is an

nk-dimensional vector in which the (i � (n1 + � � � + nk�1))th element
is equal zero implying that xi is removed from Xk, f is the error term.
Note we no longer penalize sw

i in Eq. (20), since Xk consists of only
samples of class k and so sw

i is no longer expected to be sparse.
Let Ww denote the within-class weight matrix. Since the coeffi-

cient sw
i ¼ sw

i;1; . . . ; sw
i;i�ðn1þ���þnk�1Þ�1;0; s

w
i;i�ðn1þ���þnk�1Þþ1; . . . ; sw

i;nk

h iT
for

the ‘1 reconstruction denotes the contribution of each sample
which is in the same class as xi to reconstruct xi, then

sw
i ¼ sw

i;1; . . . ; sw
i;i�ðn1þ���þnk�1Þ�1;0; s

w
i;i�ðn1þ���þnk�1Þþ1; . . . ; sw

i;nk

h iT
can reflect

the close relation among xi and the samples which are in the same
class as xi. So we use the coefficients sw

i;1; . . . ; sw
i;i�ðn1þ���þnk�1Þ�1;

0; sw
i;i�ðn1þ���þnk�1Þþ1; . . . ; sw

i;nk
as the within-class graph weights. Ww

ij is
defined as

Ww
ij ¼

0; if 16 j6n1þ���þnk�1

sw
i;j�ðn1þ���þnk�1Þ; if n1þ���þnk�1þ16 j6n1þ���þnk�1þnk

0; if n1þ���þnkþ16 j6n

8><
>:

ð21Þ

Note that the graph weights among xi and the samples which are
not in the same class as xi are all zeros. In order to preserve the data
local geometry, we minimize the following cost function:

Pn
i¼1

aT xi �
Pn
j¼1

Ww
ij aT xj

�����
�����

2

ð22Þ

From Eq. (22) we can get

Pn
i¼1

aT xi �
Pn
j¼1

Ww
ij aT xj

�����
�����

2

¼ aT Pn
i¼1

xi � XWw
i

�� ��2
� �

a

¼ aT Pn
i¼1

xi � XWw
i


 �
xi � XWw

i


 �T
� �

a ð23Þ

where Ww
i is the ith column vector of Ww. Then we can get

aT Pn
i¼1

xi � XWw
i


 �
xi � XWw

i


 �T
� �

a

¼ aT X
Pn
i¼1

ei �Ww
i


 �
ei �Ww

i


 �T
� �

XT a

¼ aT X
Pn
i¼1

eieT
i �Ww

i eT
i � ei Ww

i


 �T þWw
i Ww

i


 �T
� �

XT a

¼ aT XMwXT a ð24Þ

where Mw = (I �Ww)T(I �Ww).
3.3. The objective function and the algorithm of DSNPE

The goal of DSNPE is to maximize Eq. (19) and minimize Eq. (24)
at the same time. Motivated by the idea of MMC, the objective
function of DSNPE is

arg max
a

aT XMbXT a� laT XMwXT a ð25Þ

where l is a non-negative constant which balances the two terms of
the objective function. If we want to seek r discriminant vectors
A = [a1,a2, . . . ,ar], then the objective function of DSNPE can be
converted into

arg max
A

trðAT XMbXT AÞ � ltrðAT XMwXT AÞ ð26Þ



Table 2
Recognition accuracy (%) on ORL (mean ± std).

Sample size PCA LDA MMC LPP NPE SPP DSNPE

5 86.8 ± 2.3 91.7 ± 3.6 93.5 ± 2.6 92.7 ± 1.8 92.9 ± 1.8 90.3 ± 2.2 96.0 ± 1.4
6 89.5 ± 2.5 93.9 ± 2.4 95.0 ± 1.9 94.8 ± 2.2 95.2 ± 2.1 91.8 ± 2.9 97.2 ± 1.6
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The objective function Eq. (26) for minimizing tr(ATXMwXTA) while
maximizing tr(ATXMbXTA) clearly has a direct solution that can be
computed using the eigenvalue decomposition method. Note that
the matrix Mb and Mw are symmetric. Thus the optimal projection
vectors a1, a2, . . ., ar can be selected as the orthonormal eigenvectors
corresponding to the first r largest eigenvalues k1, k2, . . ., kr, i.e.
(XMbXT � lXMwXT)aj = kjaj, where k1 P k2 P � � �P kr. Different from
algorithms, e.g., LDA, LPP, NPE, and SPP, which lead to a generalized
eigenvalue problem, DSNPE successfully avoids the matrix singular-
ity problem since it has no inverse operation over a matrix. How-
ever, the PCA step is still recommended to reduce noise.

The proposed DSNPE algorithmic procedure can be summarized
as follows:

1. Compute the eigendecomposition of the covariance matrix
R ¼ APCARPCAAT

PCA, where RPCA is the eigenvalue of R and the col-
umns of APCA are the orthogonal eigenvectors of corresponding
eigenvalues of R. Then the projected training samples can be
computed using AT

PCAX. We still denote the data set in the PCA
subspace by X.

2. Use Eq. (15), i.e. minsb
i

sb
i

�� ��
1; s:t: xi � Xksb

i

��� ��� < e;1 ¼ 1T sb
i , to

compute the optimal sparse between-class reconstructive

weight vector sb
i and use Eq. (16), i.e.
Wb
ij¼

sb
i;j; if 16 j6 n1þ���þnk�1

0; if n1þ���þnk�1þ16 j6n1þ�� �þnk�1þnk

sb
i;j�nk

; if n1þ���þnkþ16 j6n

8><
>: ;
to construct the between-class weight matrix Wb.
3. Use Eq. (20), i.e. minfkfk1 s:t: xi ¼ Xksw

i þ f; 1 ¼ 1T sw
i , to com-

pute the optimal sparse within-class reconstructive weight vec-
tor sw

i and use Eq. (21), i.e.
Ww
ij ¼

0; if 16 j6n1þ���þnk�1

sw
i;j�ðn1þ���þnk�1Þ

; if n1þ���þnk�1þ16 j6n1þ���þnk�1þnk

0; if n1þ���þnkþ16 j6n

8><
>: ;
Fig. 3. Recognition rate vs. dimension of reduced space on the ORL database. (a) 5
Train, (b) 6 Train.

Fig. 4. Images of one person in Yale.
to construct the within-class weight matrix Ww.
4. Solve the eigenvalue problem (XMbXT � lXMwXT)aj = kjaj. Let k1

P k2 P � � �Pkr be the r largest eigenvalues of (XMbXT �
lXMwXT) and a1, . . ., ar be the associated orthonormal
eigenvectors.

5. The final projection matrix is A = APCAADSNPE, where ADSNPE =
[a1, . . . ,ar].

For convenience, we present in Table 1 the equation used in the
DSNPE algorithm.

3.4. Computational analysis of the DSNPE algorithm

It takes O(mn2) to perform PCA on the training samples in the
Step 1 of the DSNPE algorithm. The complexity of solving the Eq.
(15) using standard linear programming is 4kn2/3 + kn(n
� nk) + O(k(n � nk)) [42,43], where k is the number of iterations
used in the standard linear programming technique. Then it takes
n1(4kn2/3 + kn(n � n1) + O(k(n � n1))) + � � � + nc (4kn2/3 + kn(n � nc)
+ O(k(n � nc))) to construct the between-class weight matrix Wb

in the Step 2 of the DSNPE algorithm. Similarly, it takes n1(4kn2/
3 + knn1 + O(kn1)) + � � � + nc (4kn2/3 + knnc) + O(knc) to construct
the within-class weight matrix Ww in the Step 3 of the DSNPE
algorithm. Step 4 computes the eigendecomposition of a
(n � 1) � (n � 1) matrix, hence, takes O(n3). The matrix multiplica-
tion in the Step 5 takes O(mn2).
4. Experiments

In this section, we will conducts some experiments to evaluate
the performances of the proposed DSNPE and some other methods
including PCA [11], LDA [12], MMC [14], LPP [29], NPE [30], SPP



Table 3
Recognition accuracy (%) on Yale (mean ± std).

Sample size PCA LDA MMC LPP NPE SPP DSNPE

5 57.0 ± 3.9 74.6 ± 3.6 73.4 ± 3.2 77.9 ± 2.8 78.2 ± 3.4 60.5 ± 3.6 81.0 ± 3.7
6 61.1 ± 6.2 78.3 ± 3.8 77.3 ± 4.1 82.3 ± 3.7 81.5 ± 3.1 66.3 ± 4.2 85.0 ± 3.0

Fig. 5. Recognition rate vs. dimension of reduced space on the Yale database. (a) 5
Train, (b) 6 Train.

Fig. 6. Images of one person in AR.
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[39]. Since PCA, LDA, MMC, LPP, NPE and SPP have been success-
fully applied to face recognition, we will also evaluate the perfor-
mances of the proposed DSNPE on face image databases, i.e., ORL,
Yale, AR and FERET. To make the comparison fair, for all the eval-
uated algorithms we first apply PCA as preprocessing step by
retaining 100% energy. A nearest neighbor classifier (1-NN) with
cosine distance is employed to classify in the projected feature
space.

For LPP, the Gaussian Kernel exp (�kx � yk2/r2) is used and
parameter r is set as 2(e�10)/2.5d0, e = 0, 1, . . ., 20, where d0 is the
standard derivation of the training data set. For DSNPE, we empir-
ically set the value of l as 10.

4.1. Experiments on ORL database

The ORL face database consists of a total of 400 face images, of a
total of 40 people (10 samples per person). For some subjects, the
images were taken at different times, varying the lighting, facial
expressions (open/closed eyes, smiling/not smiling) and facial de-
tails (glassed/no glassed). All the images were taken against a dark
homogeneous background with the subjects in an upright, front
position (with tolerance for some side movement). In our experi-
ments, each image in ORL database was manually cropped and re-
sized to 32 � 32. Some example images of one person are shown in
Fig. 1.

4.1.1. Face representation using DSNPE
The projected subspaces learned by PCA, LDA, MMC, LPP, NPE,

SPP, and DSNPE are different. The images in the training set are
used to learn such spaces spanned by the eigenvectors of the cor-
responding algorithms. Using the first five image samples of each
person from the ORL database as the training set, we present the
first ten basis vectors of different algorithms in Fig. 2.

4.1.2. Comparison of the performance
In this subsection, we compare the performances of different

algorithms on the ORL database. We randomly select i(=5,6) sam-
ples of each individual for training, and the rest of the ORL data-
base for testing. For each giving i, we perform 20 times to
randomly choose the training set and calculate the average recog-
nition rates as well as the standard deviations. Table 2 presents the
maximal average recognition and standard deviations for each
method. Fig. 3 illustrates the plot of recognition rate vs. the dimen-
sion of reduced space for different methods.

4.2. Experiments on Yale database

The Yale face database contains 165 gray scale images of 15
individuals, each individual has 11 images. The images demon-
strate variations in lighting condition, facial expression (normal,
happy, sad, sleepy, surprised, and wink). In our experiments, each
image in Yale database was manually cropped and resized to
32 � 32. Fig. 4 shows sample images of one person.
Table 4
Recognition accuracy (%) on AR (mean ± std).

Sample size PCA LDA MMC

5 54.3 ± 2.2 88.2 ± 1.1 92.9 ± 0.9
4.2.1. Comparison of the performance
In this subsection, we compare the performances of different

algorithms on the Yale database. We randomly select i(=5,6) sam-
ples of each individual for training, and the rest of the Yale data-
base for testing. For each giving i, we perform 20 times to
LPP NPE SPP DSNPE

88.6 ± 1.0 88.4 ± 0.9 70.0 ± 6.7 96.1 ± 0.7



Fig. 8. Images of one person in FERET.

Fig. 7. Recognition rate vs. dimension of reduced space on the AR database. Fig. 9. Recognition rate vs. dimension of reduced space on the FERET database.

Table 6
Recognition accuracy (%) on AR database based on different classifiers using DSNPE.

Classifiers Sunglass Scarf

1-NN 70.0 20.5
SRC 87.0 59.5
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randomly choose the training set and calculate the average recog-
nition rates as well as the standard deviations. Table 3 presents the
maximal average recognitions and standard deviations for each
method. Fig. 5 illustrates the plot of recognition rate vs. the dimen-
sion of reduced space for different methods.

4.3. Experiments on AR database

The AR face database contains over 4,000 color face images of
126 people (70 men and 56 women), including frontal views of
faces with different facial expressions, lighting conditions, and
occlusions. For each individual, 26 pictures were taken in two ses-
sions (separated by two weeks) and each section 13 color images.
In our experiments here, we choose a subset which contains 1400
face images corresponding to 100 persons (50 men and 50 wo-
men), each individual has 14 images. The face portion of each im-
age is manually cropped and then normalized to 33 � 24 pixels.
The sample images of one person are shown in Fig. 6.

4.3.1. Comparison of the performance
In this subsection, we compare the performances of different

algorithms on the AR database. We randomly select five samples
of each individual for training, and the rest of the AR database
for testing. We perform 20 times to randomly choose the training
set and calculate the average recognition rates as well as the stan-
dard deviations. Table 4 presents the maximal average recogni-
tions and standard deviations for each method. Fig. 7 illustrates
the plot of recognition rate vs. the dimension of reduced space
for different methods.

4.4. Experiments on FERET database

The FERET face database contains 14,126 images from 1199
individuals. In our experiments, we select a subset which contains
Table 5
Recognition accuracy (%) on FERET (mean ± std).

Sample size PCA LDA MMC

5 38.8 ± 2.0 82.0 ± 1.4 79.8 ± 1.4
1400 images of 200 individuals (each individual has seven images).
The subset involves variations in facial expression, illumination
and pose. In our experiments, each image in FERET database was
manually cropped and resized to 40 � 40. The sample images of
one person are shown in Fig. 8.

4.4.1. Comparison of the performance
We randomly select five samples of each individual for training,

and the rest of the FERET database for testing. We perform 20
times to randomly choose the training set and calculate the aver-
age recognition rates as well as the standard deviations. Table 5
presents the maximal average recognitions and standard devia-
tions for each method. Fig. 9 illustrates the plot of recognition rate
vs. the dimension of reduced space for different methods.

4.5. Experiments based on sparse representation classifier

In this subsection, we further evaluate our proposed DSNPE
based on sparse representation classifier (SRC) [37]. Firstly, we
conduct an experiment on AR databases. In order to make the com-
parison fair, we partition the AR database as in [37]. A subset from
the AR database consisting of 1400 images from 100 subjects, 50
male and 50 female, is used here. 800 images (about 8 samples
per subject) of non-occluded frontal views with various facial
expressions are used for training, while the others with sunglasses
and scares are used for testing. The images are resized to 50 � 40.
In this experiment, our proposed DSNPE are used for feature
extraction. Then the nearest neighbor classifier (1-NN) with cosine
distance and SRC are respectively employed to classify in the pro-
jected feature space. The results are shown in Table 6.

Secondly, we conduct an experiment on Yale database. The
images are resized to 32 � 32. In the experiment, we use the first
six images per class for training and the remaining images for
LPP NPE SPP DSNPE

82.1 ± 1.7 80.5 ± 1.9 56.9 ± 1.5 87.1 ± 1.0



Table 7
Recognition accuracy (%) on Yale.

Classifiers PCA LDA MMC LPP NPE SPP DSNPE Gabor + ELDA Gabor + DSNPE

1-NN 62.2 79.3 78.5 83.4 82.6 67.5 85.7 90.4 93.5
SRC 82.9 82.7 82.8 83.5 83.2 83.4 86.0 91.2 95.1
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testing. Besides PCA, LDA, MMC, LPP, NPE, SPP, and DSNPE, we also
evaluate the performances of two Gabor-based methods, i.e., en-
hanced LDA based on Gabor (Gabor + ELDA) [23] and DSNPE based
on Gabor (Gabor + DSNPE), on Yale database. The parameters of
Gabor filter is the same as in [23]. The results are shown in Table 7.

4.6. Discussion

From the experiments above, we notice that:

(1) The proposed DSNPE consistently outperforms PCA, LDA,
MMC, LPP, NPE, and SPP in all experiments in four face dat-
abases, namely ORL, Yale, AR and FERET. The reason may be
that DSNPE is a supervised method which considers not only
the intraclass geometry but also discriminative information
derived from the interclass samples. Moreover, DSNPE can
get orthonormal projection vectors.

(2) The recognition rates significantly change on ORL, Yale, AR
and FERET databases. The recognition rates on ORL and AR
databases are much higher than that on Yale and FERET dat-
abases. The reason may be that Yale and FERET databases
contain much more variations of pose, illumination and
expression than ORL and AR databases.

(3) From Table 3 we can see that DSNPE reaches 96.1% on the AR
database (without occlusion). In [37] similar results of 95.7%
were reached and better results of 99.1% were reached in
[20].

(4) PCA is simple to perform, but it generally performs much
worse than other methods based on the nearest neighbor
classifier. The performance of SPP is better than that of
PCA in our experiments since SPP tends to include potential
discriminant information through sparse representation.

(5) As presented in Tables 5 and 6, the classifiers also affect the
recognition performance. The nearest neighbor classifier is
used in our experiments due to its simplicity. If more effi-
cient methods such as neural networks, GMM, SVM and
SRC are used, the recognition accuracies will improve. For
AR database, the DSNPE method reaches the same results
as [37] for face recognition with occlusions with sunglasses
87% and with scarves 59.5% when the SRC method is used.
Nevertheless, in [37], the SRC method was applied to sub-
images and then combined results improved to 97.5% with
sunglasses and to 93.5% with scarves. However, SRC is very
time-consuming since it uses sparse reconstruction for each
test sample. On the contrary, in DSNPE, the sparse recon-
struction is involved only in the training step. Once the pro-
jection vectors are obtained, they can be used for both the
training and test data and then the efficiency of recognition
can be effectively improved.

(6) Gabor based methods, i.e., Gabor + ELDA and Gabor + DSNPE,
can get higher recognition performances than other meth-
ods. For AR database, the Gabor based methods in [20]
results yields 98% with sunglasses and 99% with scarves.
Additionally, in [44] results reached 80% with sunglasses
and 98 with scarves. For FERET database, the DSNPE method
reaches 87.1%. However, several other local feature based
methods have reached higher performances over 90
[20,45–48]. Additionally, local feature based methods need
only one face image for enrollment which is desired in many
real situations where it is difficult to have available several
images from each person.

5. Conclusions and future work

In this paper, based on sparse representation, a new algorithm
called discriminant sparsity neighborhood preserving embedding
is proposed for supervised dimensionality reduction. DSNPE con-
structs graph and corresponding edge weights simultaneously
through sparse representation. Moreover, DSNPE explicitly takes
into account the within-neighboring information and between-
neighboring information. Experimental results on ORL, Yale, AR
and FERET face databases indicate that DSNPE performs signifi-
cantly better than PCA, LDA, MMC, LPP, NPE, and SPP in terms of
recognition accuracy.

In this paper, we only conduct our experiments on face images.
Since sparse representation has been applied to other pattern rec-
ognition problem, e.g. gene expression data [49] and handwritten
numeral [50], face recognition is only one of the potential applica-
tions of our proposed method and it is possible to process these
data sets by using our proposed DSNPE and we will conduct some
experiments on these data sets in our future work.
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