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Abstract. It is known that the sparseness of the factor matrices by Nonnegative 
Matrix Factorization can influence the clustering performance. In order to 
improve the ability of the sparse representations of the NMF, we proposed the 
new algorithm for Nonnegatie Matrix Factorization, coined nonnegative matrix 
factorization on orthogonal subspace with smoothed L0 norm constrained, in 
which the generation of orthogonal factor matrices with smoothed L0 norm 
constrained are the parts of objective function minimization. Also we develop 
simple multiplicative updates for our proposed method. Experiment on three 
real-world databases (Iris, UCI, ORL) show that our proposed method can 
achieve the best or close to the best in clustering and in the way of the sparse 
representation than other methods. 
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1 Introduction 

Nonnegative Matrix Factorization (NMF) is a recent method for finding a 
nonnegative decomposition of the original data matrix. Given an input data matrix 
V , each column of which represents a sample, NMF produces two factor matrices 
W and H  using low-rank approximation such that V WH≈ . Each column of 
W represents a base vector, and each column of H describes how these base vectors 
are combined fractionally to form the corresponding sample in V . All entries in 
matrices are required to be nonnegative. Nonnegativity enables a non-subtractive 
combination of parts to form a whole, and make the encoding of data easier to 
interpret [1]. So, NMF is useful for learning parts-based representation and can be 
able to generate sparse representations of data. This caused the NMF method have 
been widely used in many applications, such as data mining, pattern recognition. 

However, NMF cannot always guarantee an intuitive sparse representations of 
data. The parts-based representation of some facial images datasets reported in 
literature [2] was global rather than local. Later a multitude of variants have been 
proposed to improve NMF. A notable stream of efforts attaches various regularization 
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terms to the original NMF objective to enforce higher sparseness [3]. Recently, it has 
been shown that the orthogonality constraint on factor matrices can enhance the 
sparseness. Taking data clustering for example, it is conducted on the clustering of the 
columns of the input data matrix, and indicated by the matrix H , orthogonality on 
each row of H  can improve clustering accuracy. It was proved that orthogonal NMF 
is equivalent to k-means clustering [4]. So how to enhance the ability of the 
sparseness representation of the data can be an important issue? Ding et al. [5] 
proposed Orthogonal Nonnegative Matrix Factorization (ONMF) firstly which 
orthogonality is achieved by solving an optimization problem with orthogonality 
constraints. However, their method requires an intensive computation, which is very 
expensive for clustering task. Zhao Li et al. [6] considered the deficiency of the 
computational complexity, they proposed a new method called NMF on Orthogonal 
Subspace (NMFOS), in which orthogonality constraint on one of the factor matrices is 
embedded as part of the objective function optimization. Thus, orthogonality is 
achieved through the process of factorization instead of using additional constraints. 

To obtain the sparsest of the factor matrices, its essence is searching for a solution 
with minimal L0 norm for matrices, i.e., minimum number of nonzero components of 
W and H . It is stated that searching the minimum L0 norm is an intractable problem 
as the dimension increases (because it requires a combinatorial search), and it is too 
sensitive to noise (because any small amount of noise completely changes the L0 
norm of a vector) [7]. Consequently, researchers consider other approaches. Zuyuan 
Yang et al.[8] introduced smoothed L0 norm constraints to the original NMF, denoted 
NMF-SL0, to enhance the ability of the sparseness.  

In this paper, as the smoothed L0 norm of the factor matrices can reflect the 
sparseness intuitively and it is easy to be optimized, we consider NMF on orthogonal 
subspace with smoothed L0 norm constraints, called smoothed L0 norm constrained 
nonnegative matrix factorization on orthogonal subspace (NMFOS-SL0), and its 
application to the task of clustering, where an orthogonality constraint and the 
smoothed L0 norm constraints are imposed on the nonnegative decomposition of an 
inputing data matrix. We develop new multiplicative updates for NMFOS-SL0. 
Experiments on three different datasets show our method perform better in clustering 
task, and sparseness of the factor matrices, compared to other methods.  

The rest of this paper is organized as follows. In Section 2, NMF and NMFOS are 
presented. Section 3 describes the NMFOS-SL0, and give new multiplicative updates 
for it. Simulations using three real databases are presented in Section 4. Finally, 
conclusions are summarized in Section 5. 

2 Related Work 

2.1 Standard NMF  

Consider a data matrix [ ]1 2, , , m n
nv v v ×= ∈V R , each column of which consists of 

m features, and represents a sample such as a text focument, or a face image. NMF 
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aims to find two nonnegative matrices m r×∈W R ,
r n×∈H R , { }min ,r m n , such 

that V WH≈ . So the objective optimization problem can be concluded:  

2

2,
min . . ,s t 0− ≥
W H

V WH W H  (1)

The multiplicative update rules were investigated by Lee et al. [1], as follows: 

a)  
T

← ⊗
TVH

W W
WHH

；b)  
T

← ⊗
T

W V
H H

W WH
 (2)

where ⊗  denote elementwise multiplication.  

2.2 Nonnegative Matrix Factorization on Orthogonal Subspace (NMFOS)  

The important application of NMF is the parts-based representation. But NMF cannot 
always guarantee the intuitive parts-based representation which is conducted on the 
clustering of the rows of the input data matrix, and is described by the factor matrix 
W . Local representation requires the base vectors of the factor matrix H , which 
represent the parts of data, to be distinct from each other. Local representation is 
related to orthogonality, the more orthogonal between the base vectors, the more 
distinct between the parts[6]. Ding et al [5] in order to enhance the orthogonality of 
the factor matrices, they introduced the orthogonality constraints to the original NMF. 
So the ONMF can be described as follows: 

2

2,
min . .s t

≥
− T

W H 0
V WH W W = I  ,    

2

2,
min . .s t

≥
− T

W H 0
V WH H H = I  (3)

Considering the deficiency of the computational complexity, Zhao Li et al [6] proposed 
the method of NMFOS, in that orthogonality constraint on one of the factor matrices is 
embedded as part of the objective function optimization. And it was described as follows: 

22

2 2,
min λ

≥
− + −T

W H 0
V WH W W I  ,    

22

2 2,
min λ

≥
− + −T

W H 0
V WH HH I  (4)

Also Zhao Li et al [6] developed the multiplicative update rules for problem (4) and 
could be find from the literature [6]. 

3 Related Work Smoothed L0 Norm Constrained Nonnegative 
Matrix Factorization on Orthogonal Subspace (NMFOS-SL0) 

3.1 Smoothed L0 Norm 

Let the function ( )
2

2
exp

2

s
f sσ σ

 
 = −
 
 

, then ( )
0

1, 0
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=  ≠
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f s

if sσσ
, where σ  is a 

positive constant and s  is a variable. Let the function ( )
1 1

W
= =

= × −  
m r

st
s t

J m r f wσ  as 
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measurement for the matrix W . It is obviously that when 0→σ ,
0W W→J . 

Therefore, WJ  is called the smoothed L0 norm [9]. In a similar way, we can define 

the smoothed L0 norm for the matrix H  as: ( )
1 1

H
= =

= × −  
r n

tu
t u

J r n f hσ . 

3.2 NMFOS-SL0 

As the smoothed L0 norm of the factorization matrices can reflect the sparseness 
intuitively and it is easy to be optimized, we consider NMF on orthogonal subspace 
with smoothed L0 norm constraints, called NMFOS-SL0. We introduce the measure 
functions WJ  and HJ  i.e. the smoothed L0 norm constraint with the factorization 
matrices to the NMFOS’s objective function. And get the new problems as follows:  

22

2 2,
min : T

W W W
W H 0

V WH W W I
≥

= − + − +F Jλ α  (5)

22

2 2,
min : T

H H H
W H 0

V WH HH I
≥

= − + − +F Jλ α  (6)

The partial derivatives of WF in (5) with respect to W and H  are as follows: 

  
2 2

2
W W

2 2

W

W W
VH W WHH WW W W

W

W V W WH
H

∂ ⊗ = − + ⊗ −  ∂  


∂ = − + ∂

T T T

T T

F
+ exp

F

α− λ λ −
σ σ

    (7) 

where the parameter Wα  is selected according to the following exponential rule: 

( )expW = −W W kα β τ , k  is the iteration number, Wβ  and Wτ  are constants [10]. 

In order to constrain W  and H  to be nonnegative, let H

H

W WH
=

T
ξ , 

2
2

W
W
2 2

W
W W

WHH WW W W
=

⊗ + − ⊗ − 
 

T T exp
ξ

αλ
σ σ

, Then, based on the widely 

used alternate-least-squares multiplication updating rules, Substitute Wξ  and Hξ  to 

W
WW W

W

∂
= −

∂
Fξ  and H

HH H
H

∂= −
∂
Fξ  respectively. We can give the 

multiplicative update rules of W and H  for problem (5) as follows: 



 Nonnegative Matrix Factorization on Orthogonal Subspace 5 

 

a) 2

2
2

W
2 2

VH W
W W

W W
WHH WW W W

← ⊗
⊗ + − ⊗ − 

 

T

T T

+

exp
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; b)
W V

H H
W WH

← ⊗
T

T
  (8) 

In similar way , we get the multiplicative update rules for problem (6) as follows: 

c)
VH

W W
WHH

← ⊗
T

T
;  d)

2

2
2

H
2 2

W V H
H H

H H
W WH HH H H

← ⊗
⊗ + − ⊗ − 

 

T

T T

+

exp

λ
αλ
σ σ

 (9) 

Based on the analysis above, the NMFOS-SL0 algorithm can be concluded as : 

Step1: Initialization: input the nonnegative matrix V , and give the initial 

nonnegative matrices of W , H  randomly . And set the parameters 

, , , , ,=i i i W Hλ σ β τ , respectively; 

Step2:  Updating: update W , H  using (a) and (b) (or (c) and (d) ) respectively; 

Step3:  Stopping: if a stopping criterion is satisfied, the algorithm stops; otherwise, 

go to step 2. 

4 Experiments 

We tested our proposed method on three databases[11]. And we do the clustering and 
part-based representation experiment on these database. For comparisons, three other 
algorithms have been chosen: NMF [1], ONMF [5], and NMFOS [6]. 

Iris, a data set that contains 150 instances of four positive-valued attributes. The 
samples belong to three iris classes, each including 50  instances. This dataset is 
selected mainly for comparison with the following larger scale datasets. 

• Digit, a subset containing “0,” “2,” “4,” and “6” selected from UCI optical 
handwritten digit database. There are 2237 samples of 62 nonnegative integer 
attributes. This dataset is used to demonstrate the method behavior when samples are 
much more than attributes. 

• ORL Database, a set of face images at different times, varying the lighting, facial 
expressions and facial details. There are 400 grayscale images from 40 distinct 
subjects and of size 92*112. This data set is used to study the case where the 
dimensionality is much higher than the number of samples. 
A.  Clustering  
Clustering is an important application of NMF and its variants. We have adopted two 
measurements, purity and entropy, which are widely used in nonnegative learning 
literature, for comparing clustering results. Suppose there is ground truth data that 

labels the samples by one of classes. Purity is given by 
11

1
max

≤ ≤=
= 

r
l
k

l qk
purity n

n
, where 

l
kn  is the number of samples in the cluster k  that belong to original class l .  
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A larger purity value indicates better clustering performance. Entropy measures how 
classes are distributed on various clusters. The entropy of the entire clustering 

solution is given by 2
1 12

1
log

log = =
= −  

lqr
l k
k

k l k

n
entropy n

n q n
, where =  l

k k
l

n n . 

Generally, a smaller entropy value corresponds to a better clustering quality. We set 
=r q  and repeated each algorithm on each data set 100 times with different random 

seeds for initialization. In our method, we set parameter 5=λ and , , ,=i i i W Hβ τ  
equal to 100 and 0.01, respectively. The parameter [1,0.5,0.2,0.1,0.05,0.02,0.01]∈σ  

that we chosed following the literature [9] and then the best result was reported.The 
mean and standard deviation of the purities and entropies of each algorithm data set 
pair are shown in Table 1 and 2 , respectively. From the Table 1, 2, we can see that 
the NMFOS-SL0 algorithm improves clustering accuracy for Iris and ORL datasets, 
and on the Digit database our proposed method performs very closely to the best. 

Table 1. Clustering performance of purity comparison on three database (mean± deviation) 

Database NMF[11] ONMF[11] NMFOS NMFOS-SL0 

Iris 0.78±0.05 0.85±0.03 0.86±0.02 0.88±0.02 

Digit 0.98±0.00 0.98±0.00 0.95±0.01 0.96±0.01 

ORL 0.47±0.03 0.72±0.02 0.74±0.03 0.78±0.02 

Table 2. Clustering performance of entropy comparison on three database (mean± deviation) 

Database NMF[11] ONMF[11] NMFOS NMFOS-SL0 

Iris 0.42±0.08 0.30±0.05 0.26±0.04 0.24±0.03 

Digit 0.08±0.00 0.08±0.00 0.16±0.01 0.14±0.01 

ORL 0.34±0.02 0.17±0.01 0.16±0.01 0.15±0.02 

 

B.  Part-Based Representation 
In order to study the sparseness ability of parts-based representation of proposed 
NMFOS-SL0 method. We introduce the sparseness according to the Hoyer[3], 
comparing the base sparseness ability with those learned by NMF, ONMF and the 
NMFOS on ORL database. And the sparseness was defined as:  

         ( ) 2 1
  = − −  

  
 i i

i

sparseness X n x x n                (10) 

where n  is the dimensionality of vector X . Table 3 shows the average sparseness 
of the columns in the learned basis by NMF, ONMF, NMFOS and NMFOS-SL0. It 
can be seen that the sparseness of the factorization matrices that used the method of 
NMFOS and NMFOS-SL0 are sparser than NMF and ONMF’s. 
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Table 3. The sparseness of the factories matrices comparison 

Hoyer’s method    NMF     ONMF NMFOS     NMFOS-SL0

W             0.38       0.58     0.69             0.75 

H             0.34       0.49   0.60             0.62 

5 Conclusion  

In this work, a new NMF method based on the orthogonal subspace with smoothed L0 
norm constrained is proposed, which can enhance the sparseness of the factor 
matrices. And we develop the multiplicative updates for the new method. This 
method introduce the additional parameters that balance the sparseness and 
reconstruction. However, the selection of the parameter value usually relies on 
exhaustive methods, which hinders their application. In future work, more efficient 
learning algorithms will be exploited. 
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