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Abstract. Sparse representation based classification (SRC) has been very 
successful in many pattern recognition problems. Recently, some extended 
kernel methods have been proposed through mapping the samples from original 
feature space into a high dimensional feature space, and then performing the 
SRC in the high dimensional feature space. However they are all simple kernel 
methods whose kernel is not most suitable one. For addressing this question, we 
proposed a novel method named multiple kernel sparse representation based 
classification (MKSRC), which combine several possible kernels and make full 
of kernel information. More importantly kernel weights of MKSRC can be 
automatically selected. The experimental results of face databases indicated 
recognition performance of new method is superior to other state-of-the-art 
methods.   
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1 Introduction 

The nearest-neighbor classifier(NN) is extremely simple and it is accurate and 
applicable to various problems [1]. The simplest 1-nn algorithm assigns an input 
sample to the category of its nearest neighbor from the labeled training set. Instead of 
looking at the closest reference sample, Hart [2] and Wilson [3] proposed k-nn 
classfier which looks at the k samples in the reference set that are closest to the 
unknown sample and carries out a vote to make a decision. The support vector 
machine classifier is also another classifier which is solidly based on the theory of 
structural risk minimization in statistical learning. It is well known that the SVM 
maps the inputs to a high-dimensional feature space and then finds a large margin 
hyperplane between the two classes which can be solved through the quadratic 
programming algorithm. 
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Recently the kernel approach [4] has attracted great attention. It offers an 
alternative solution to increase the computational power of linear learning machines 
by mapping the data into a high dimensional feature space. The approach has been 
studied and extended some kernel based algorithms such as kernel principal 
component analysis (KPCA) [5] and kernel fisher discriminant analysis(KFD)[6,7]. 
As the extension of conventional nearest-neighbor algorithm, the kernel optimization 
algorithm [8-14] was proposed which can be realized by substitution of a kernel 
distance metric for the original one in Hilbert space. By choosing an appropriate 
kernel function, the results of kernel nearest-neighbor algorithm are better than those 
of conventional nearest-neighbor algorithm. Similarity, the single-kernel SVM 
classifier was proposed, and various remedies were introduced,  such as the reduced 
set method[15],[16],bottom-up method[17], building of a sparse large margin 
classifier[18],[19], and the incremental building of a reduced-complexity classifier[9]. 

But these methods have some disadvantages. NN predicts the category of the 
image to be tested by only using its nearest neighbor in the training data, so it can 
easily be affected by noise. The shortcoming of the SVM is that it is often not as 
compact as the other classifiers such as neural networks. Fortunately Wright et al. 
proposed a sparse representation based classification for face recognition[20](SRC) 
which first codes a testing sample as a sparse linear combination of all the training 
samples, and then classifies the testing sample by evaluating which class leads to 
the minimum representation error. SRC is much more effective than state-of-art 
methods in dealing with face occlusion, corruption, lighting and expression changes, 
etc. It is well known that if an appropriate kernel function is utilized for a test sample, 
more neighbors probably have the same class label in the high dimensional feature 
space. So sparse representation in the high dimensional can improve the performance 
of recognition and discriminating ability, and Some methods were proposed such as 
kernel representation based classification algorithm (KSRC) [21, 22, 23], etc. 
However it is often unclear what the most suitable kernel for the task at hand is, and 
hence the user may wish to combine several possible kernels.  One problem with 
simply adding kernels is that using uniform weights is possibly not optimal. To 
overcome it, we proposed a novel method names multiple sparse representation based 
classfication (MKSRC) which can optimize the kernel weights while training the 
KSRC. 

2 Multiple Kernel Sparse Represention Based Classification 
(MKSRC) 

Suppose there are p  classes in all, and the set of the training samples 

is Nd
npp p

xxxAAAA ×ℜ∈== ],,,[],,,[ ,2,11,121  , where  ==
p

i inN 1  and 

1×ℜ∈ dy  is the test sample. The traditional sparse coding model is equivalent to the 

so-called LASSO problem [24]: 

σββ <− 1
2
2 ||||  ||||min s.t. Ay          where σ > 0 is a constant. 
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Suppose there exists a feature mapping function )(: Kdkd <ℜ→ℜφ . It maps  

the feature and basis to the high dimensional feature space: 

)](,),(),([],,,[),( ,2,11,1,2,11,1 pp npnp xxxUxxxAyy φφφφ  =→=→ .there 

exits one problem that one kernel is not most suitable kernel, so we wish to combine 
several possible kernels. The mode of Multiple Kernel by Lanckriet[25] et al. 

is
1
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K αα , then substitute the mapped features and basis to the 

formulation of sparse coding, obtain the objective function as follow:  
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For sample x and y , we have 
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Setting the derivative of J  w.r.t. the primal variable iα  to zero, 
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Because ( )yφ and U are unknown, Eq.(1) cannot be solved directly. But 

according to [21], Eq.(1) can be transformed to  
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Since initial weights are an estimator which is not optimal, the implementation of 

MKSRC is an iterative process. When the difference of weights iα is small enough, 

the convergence is stopped. It can be formulated as follow: 
1|| ||t t to lα α+ − ≤ From above all, the MKSRC algorithmic procedures can 

be summarized as Algorithm 1: 
 

Algorithm 1. Multiple Kernel Sparse Representation based Classification 
algorithm 

Step 1: Input training samples ℜ∈ =
×

p

i ind
A 1 partitioned into p classes, and a test 

sample y . The number of kernel function is m . 

Step 2: Compute initial weights
1

K
m

α =  and 
1

( , ) ( , ) 
m

i j k k i j
k

k x x k x xα
=

=
 

Step 3: Compute the coefficient 2
2
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Step 4: Compute the weights 
Kα  by Eq. (5) 

Step 5: Go back to step 3 until the condition of convergence is met. 

Step 6: Compute 2
2ˆ( )= || ( ) ||T T

jr y U y U Uvφ −   

Step 7: Output that identity( ) argmin ( ).jy r y=  

3 Experiments and Discussions 

In this section, we perform experiments on face databases to demonstrate the 
efficiency of MKSRC. To evaluate more comprehensively the performance of 
MKSRC, in section 3.1 we first test face recognition without occlusion, and then in 
section 3.2 we demonstrate the robustness and high efficiency of the proposed method 
to random block occlusion. In the experiments, three single kernel function were tried 
with linear, polynomial, and Gaussian kernels and the kernel parameters were tuned using 
cross validation. We performed 10 trials , and report the average test results.  

3.1 Face Recognition without Occlusion 

The ORL face dataset consists of 400 frontal face images of 40 subjects. They are 
captured under various lighting conditions and cropped and normalized to 112 × 92 
pixels. The face images were captured under various illumination conditions. We 
randomly split the database into two halved. One half (5 images per person) was used 
for training, and the other half for testing. The images are reduced to 30, 60, 110 
dimensions, respectively. Table 1 and Fig.1 illustrate the face recognition rates under 
different methods. We can see that the recognition rates are different with the various 
dimensions. Our MKSRC method achieves a recognition rate between 89% and 
97.8%, much better than the other methods. 
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Table 1. Accuracy on ORL face database 

 SVM SRC KSRC(Polynomial) KSRC(Gaussian
) 

MKSRC 

Dimensions(d=30)      
Accuracy 93% 93% 95.5% 95.5% 97.1% 
Parameter   d=13 t=2 d=13 t=2 
Dimensions(d=60)      
Accuracy 94% 93.5% 96.5% 95.5% 97.8% 
Parameter   d=13 t=2 d=13 t=2 
Dimensions(d=110)      
Accuracy 94% 94% 96.5% 94% 97.2% 
Parameter   d=13 t=2 d=13 t=2 
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Fig. 1. The average recognition rates of SVM, SRC, KSRC (Polynomial), KSRC (Gaussian) 
and MKSRC versus the dimensions on ORL face database 

Table 2. Accuracy on ORL face database with block occlusion 

 SRC KSRC(Polynomial) KSRC(Gaussian) MKSRC 

Occlusion(10%)     

Accuracy 89% 91% 90.4% 93.3% 

Parameter  d=2 t=3 d=2  t=3 

Occlusion (20%)     

Accuracy 80.5% 83.5% 81% 84% 

Parameter  d=2 t=3 d=2  t=3 

Occlusion (30%)     

Accuracy 71% 73.6% 71% 74.8% 

Parameter  d=2 t=3 d=2  t=3 
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3.2 Face Recognition with Block Occlusion 

The next one is more challenging, we test the efficiency of MKSRC to the block 
occlusion using the ORL face dataset. We randomly take the first half for training and 
the rest for testing. We simulate various levels of contiguous occlusion, from 10% to 
30%, by replacing a randomly located square block of each test image with an 
unrelated image, Again, the location of occlusion are randomly chosen for each image 
and are unknown to the computer. A test example of ORL with 30% occluded block 
is shown as Figure 2. Here, for computational convenience, the size of image is 
cropped to 32 × 32, and the images are reduced to 60 dimensions. In Table2, the 
accuracy rate of all the methods decline with the occlusion levels increasing, which 
indicates that loss of feature affects the face recognition performance. But MKSRC 
preserves good performance of 74.8% when the occlusion percentage is 30%.  

 

Fig. 2. An test example of ORL face database with 30% occluded block 

4 Conclusion 

This paper proposed a multiple kernel sparse representation based classification. On 
the high-dimensional data such as face images, KSRC could get better performance 
than SRC. But KSRC does not make full of kernel information. MKSR can solve this 
problem by combining several possible kernels e.g. RBF kernel, while selecting the 
suitable weights of kernel function. On face database containing varying pose, 
MKSRC achieves the best performance. Because kernel parameter is important for 
the recognition performance, we will focus on the estimating the kernel parameter in 
the future. 
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