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Abstract Sparse representation based classification (SRC) have received a great deal of
attention in recent years. The main idea of SRC is to represent a given test sample as a sparse
linear combination of all training samples, then classifies the test sample by evaluating which
class leads to the minimum residual. Although SRC has achieved good performance, espe-
cially in dealing with face occlusion and corruption, it must need a big occlusion dictionary
which makes computation very expensive. In this paper, a novel method, called heterosced-
astic sparse representation based classification (HSRC), is proposed to address this problem.
In the presence of noises, the SRC model exists heteroscedasticity, which makes residual
estimation inefficient. Therefore, heteroscedastic correction must be carried out for homo-
scedasticity by weighting various residuals with heteroscedastic estimation. As for hetero-
scedasticity, this paper establishes generalized Gaussian model through which to estimate.
The proposed HSRC method is applied to face recognition (on the AR and Extended Yale B
face databases). The experimental results show that HSRC has significantly less complexity
than SRC, while it is more robust.

Keywords Heteroscedastic · Face recognition · Sparse representation based
classification (SRC) · Generalized Gaussian model (GGM)

1 Introduction

In recent years, there is an increasing trend of using face recognition technology, and many
face recog-nition techniques have been developed. For unsupervised methods, e.g., princi-
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pal component analysis (PCA) [13] and locality preserving projection (LPP) [11], the low-
dimensional representa-tion should discover the structure information of the data point cloud
[4]. For supervised classifica-tion problem, e.g., linear discriminant analysis (LDA) [12,15]
and maximum margin crite-rion (MMC) [16], the reduced low-dimensional features should
contain most discriminative informa-tion based on the labeled data. But their performances
for noise images are not ideal.

In recent years, sparse representation has aroused broad interest due to its great success in
image processing [6,18], and it has also been used for face recognition(FR). The basic idea
of sparse representation is to represent a given test image using a small number of atoms
parsimoniously chosen out of an over-complete dictionary. The sparsity of the coding coef-
ficient can be measured by l0-norm, which counts the number of nonzero entries in a vector.
However the combinatorial l0-norm minimization is an NP-hard problem, so the approxima-
tion methods need to be adopted. Several methods have been proposed recently, e.g., match
pursuit(MP) and basic pursuit(BP).

Based on MP method [10,19,28], application-based attempts were drawn to look at spe-
cial features such as nose localization in face recognition process. In this face recognition
application, Phillips [14] generalized Mallat and Zhang’s matching pursuit algorithm to
simultaneously decompose multiple images for pattern recognition application and intro-
duced matching pursuit filters (MPFs) as an adapted wavelet expansion build from a training
set of the object. Francois [7] also proposed a new shape descriptor on the basis of the use
of matching pursuit as a shape analysis tool, and extended it by introducing a scale-space
approach and an affine invariant dictionary. In 2010, for overcoming the large size of the
training matrix limitations, Patel [24] proposed an automatic target recognition algorithm
based on learning class supervised dictionaries for simultaneous sparse signal representation
and classification. But these methods are not ideal for recognition of images with occlusion
and corruption.

Based on BP method [2], Sparse representation based classification (SRC) was reported by
Wright et al. [30] for robust face recognition in 2009. In Wright et al.’s pioneer work, the train-
ing face images are used as the dictionary of representative samples, and an input test image
is coded as a sparse linear combination of these sample images via l1-norm minimization.
The results in [5,30,32] of SRC were exciting in FR, which could lead to high classification
accuracy, especially well handling the problems of face occlusion and corruption. Further-
more, Yang and Zhang [31] used Gabor features in SRC to reduce computation complexity
and improve recognition rate with a learned Gabor occlusion dictionary. However, the main
shortcomings of these methods is that a large number of training images are required for good
recognition performance. Especially when the number of atoms required in the orthogonal
occlusion matrix is very large, we get a very big occlusion dictionary, which makes the sparse
process very computationally expensive and the real-time processing very difficult.

In order to avoid the problem of the occlusion dictionary, a novel method called heteros-
cedastic sparse representation based classification (HSRC) is proposed. In real world, such
noises as occlusion and corruption make SRC model exist heteroscedasticity which makes
residual estimation inefficient. Therefore, Heteroscedastic correction must be carried out for
homoscedasticity by weighting various residuals with heteroscedastic estimation. Because
the residual distribution can be approximated by generalized Gaussian model (GGM), we can
obtain heteroscedasticity through maximum likelihood (ML) estimation of residuals. Differ-
ent from the approximate decomposition of MP methods and the l1-regularized minimization
of BP methods, the proposed HSRC method adopts l2-regularized least square, introduce
residuals weights which are computed approximating these residuals by using a zero-mean
generalized Gaussian density. The proposed HSRC method was extensively evaluated on FR
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in different conditions, including variations of illumination, expression, occlusion, corrup-
tion. The experimental results demonstrated that HSRC outperforms significantly previous
state-of-the-art methods. In particular, HSRC could achieve very high recognition rate but
with low computational cost.

The rest of this paper is organized as follows: Sect. 2 briefly reviews SRC. Then pro-
posed HSRC algorithm is presented in Sect. 3. Section 4 conducts experiments to validate
the proposed method and Sect. 5 concludes the paper.

2 Sparse Representation Based Classification [30]

Given a signal (or an image) y ∈ �m , and a matrix A = [a1 . . . , a2, an] ∈ �m×n containing
the elements of an overcomplete dictionary [23] in its columns, the goal of sparse represen-
tation is to represent y using as few entries of A as possible. This can be formally expressed
as follows:

x̂ = arg min
x

||x ||0 s.t. y = Ax (1)

where x ∈ �n is the coefficient vector, and ||x ||0 is the l0-norm which is equal to the number
of non-zero components in x . However, this criterion is not convex, and finding the sparsest
solution of Eq. 1 is NP-hard. Fortunately this difficulty can be by passed by convexizing the
problem and solving

x̂ = arg min
x

||x ||1 s.t. y = Ax (2)

where l1 is used instead of l0. It can be shown that if the solution x sought is sparse enough,
the solution of l0 minimization problem is equal to the solution of l1 minimization problem.
This problem is convex and can be solved with variety of methods, e.g., Basis Pursuit [3]
method which uses an interior point method to find a solution.

Finally, for each class j , let δ j : �n → �n be the characteristic function which selects
the coefficients associated with the j-th class. Using only the coefficients associated with the
j-th class, one can approximately reconstruct the test sample y as ŷ = Aδ j (x̂), then classify
y based on these approximations by assigning it to the class that minimizes the residual:

r j (y) = ||y − Aδ j (x̂)||2, f or j = 1, . . . , k. (3)

If rl(y) = min r j (y), y is assigned to class l.
Now suppose that the face image is partially occluded or corrupted, the problem can be
expressed as follows:

x̂ = arg min
x

||x ||1 s.t. y = Ax + ε (4)

where ε is residual. We can approximately reconstruct the test sample y as ŷ = Aδ j (x̂) + ε̂,
then compute the residuals:

r j (y) = ||y − Aδ j (x̂) − ε̂||2, f or j = 1, . . . , k. (5)

If rl(y) = min r j (y), y is assigned to class l.
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3 Heteroscedastic Sparse Representation Based Classification (HSRC)

In this section, we show how heteroscedastic sparse representation based classification can
be used for FR, and discuss why the proposed method is much more effective and efficient
than state-of-art FR methods.

3.1 Heteroscedastic Correction for Homoscedasticity

Equation 4 can also be expressed as the original model

y = Ax + ε s.t. ‖x‖1 ≤ ρ(ρ is a constant) (6)

where ε = (ε1, ε2., . . . , εi , . . . , εn), cov(εi , ε j ) =
{

0i �= j
1i = j

i, j = 1, 2, . . . , n.

It can be seen that Eq. 6 is equivalent with objective function as follow:

x̂ = arg min
x

{
||y − Ax ||22 + λ ‖x‖2

1

}

If E(εi ) = 0 V ar(εi ) = σ 2i = 1, 2, . . . , n.
Then covariance matrix of the ε

E(εεT ) = σ 2 I = σ 2

⎡
⎢⎢⎢⎣

1 0
1

. . .

0 1

⎤
⎥⎥⎥⎦

Thus the original mode exists homoscedasticity which means that the residuals in the general
model are identically distributed, i.e. that they have the same variance.
But in practice there are usually different variances due to noises, i.e.

V ar(εi ) = σ 2
i i = 1, 2, . . . , n

then covariance matrix of the ε

E(εεT ) =

⎡
⎢⎢⎢⎣

σ 2
1 0

σ 2
2

. . .

0 σ 2
n

⎤
⎥⎥⎥⎦ �= σ 2 I

we consider the original mode exists heteroscedasticity which make estimator of coeffi-
cients no longer efficient. Thus one possible way is to correct the heteroscedasticity through
weighted least square which make residuals of large variance have low weight values and
residuals of small variance have high weight values. Heteroscedasticity needs to be trans-
formed to homoscedasticity [9,17,22].

We assume � = diag(σ 2
1 , σ 2

2 , . . . , σ 2
n )

Let W = diag(σ−1
1 , σ−1

2 , . . . , σ−1
n )

Now the following transformed model can be obtained

y∗ = A∗x + ε∗ (7)

where y∗ = W y, A∗ = W A, ε∗ = Wε

Consider E(ε∗(ε∗)T ) = E(WεεT W T ) = W E(εεT )W T = W�W T = I
we can see that the transformed model is homoscedastic.
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3.2 Coefficients of the Transformed Model

Hence in the new model the residual sum of squares is:

J =
n∑

i=1

(εi
∗)2 =

n∑
i=1

(
εi

σi
)2 (8)

The estimation of sparse coefficients can be obtained by minimizing the J :

x̂ = arg min
x

J = arg min
x

n∑
i=1

(
1

σi
εi )

2 = arg min
x

n∑
i=1

(
1

σi
(yi − ai xi ))

2

= arg min
x

(y − Ax)T W (y − Ax) (9)

In order to keep the coefficients sparsity, the sparsity term ||x ||1 must be added. However
the l1− minimization needs much computational cost due to the sparsity of l1− norm. We
consider there might be other minimization method which can substitute for l1− minimiza-
tion method. Recent research works [25,27,33] have questioned the use of sparsity for image
classification. Shi et al. [27] showed that the sparsity assumption which underpins much of
this work is not supported by the data, and a simple l2− norm to the face recognition problem
is not only significantly more accurate than the state-of-the-art approach, it is also more
robust, and much faster. Moreover Zhang et al. [33] have shown that it is not necessary to
impose the l1− sparsity constraint, while the l2− norm regularization performs equally well.
In order to increase the efficiency of the proposed method, we substitute l1− minimization
with l2− minimization as follow:

x̂ = arg min
x

{
(y − Ax)T W (y − Ax) + λ ‖x‖2

2

}
(10)

where λ is positive scalar.
We assume Q = (y − Ax̂)T W (y − Ax̂) + λ

∥∥x̂
∥∥2

2

∂ Q

∂ x̂
= −2AT W (y − Ax̂) + 2λx̂ = 0

Thus the coefficient x̂ = (AT W A + λ)−1 AT W y

3.3 Heteroscedastic Weights

How do we obtain W ? First, we can construct new model to obtain σi . Due to occlusions,
corruptions and expressions variations occur in the face images, residual ε doesn’t follows
Gaussian or Laplacian distribution. Fortunately a good probability density functions (PDF)
approximation for the residual may be achieved by adopting a zero-mean generalized Gauss-
ian density [1,21,26], which is defined as

p(εi ; σ 2
i , β) = βη(σ, β)

2�(1/β)
exp{−[η(σ, β)|εi |]β} (11)

Where σi and β denote the variance and the shape parameter of the distribution respectively.

� is the gamma function given by �(x) =
∞∫
0

t x−1e−t dt.x > 0. In addition, η(σ, β)is given

by
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η(σ, β) = 1

σi

[
�(3/β)

�(1/β)

]1/2

.

From above we can see that the GGM contains the Gaussian and Laplacian model as
special cases, using β=2 and β=1, respectively.

Furthermore, in [29] evaluation of accuracy of estimating for GGM models among classic
statistical methods shows that the ML estimator is significantly superior. We now describe
an ML estimator for GGD.

We define the likelihood function of the residual ε = (ε1, . . . , εn) having independent

component as L(ε; σi , β) = ln
n∏

i=1
p(εi ; σi , β).

The following likelihood equations have a unique root in probability, which is indeed the
maximum likelihood estimator

∂L(ε; σi , β)

∂σi
= 1

η

∂η

∂σi
− β(ηεi )

β−1 |εi | ∂η

∂σi
= 0 (12)

The ML method given the estimates of parameters σi as follows:

σi =
[

�(3/β)

�(1/β)

]1/2

β1/β |εi | (13)

Because experiments show the values of β is set to [0.2, 2], a reasonable β can be found
to make good recognition performance. Then W can be obtained by σi . It is clear that the
values of weight are inversely proportional to the values of the residual. For simplicity, initial
εi is obtained by ordinary least squares estimation.

3.4 Heteroscedastic Sparse Representation Based Classification Algorithm (HSRC)

Since initial residual is an estimator which is not optimal, the implementation of HSRC is an
iterative process. Considering the fact that the residual sum of squares ε2 decreases in each
iteration, and it is non-negative value, the proposed HSRC algorithm will converge. When
the difference of ε2 is small enough, the convergence is stopped. It can be formulated as
follow: ∥∥∥ε(t)

∥∥∥2

2
−

∥∥∥ε(t+1)
∥∥∥2

2
/

∥∥∥ε(t)
∥∥∥2

2
< η

where η is a small positive scalar, t is the t-th of the iteration. In order to verify the convergence
of the HSRC algorithm, Experiments on FR database were done. It is straightforward that
the residual sum of squares ε2 decreases as the number of iterations increases, as illustrated
in Fig. 1.

From above all, the HSRC algorithmic procedures can be summarized as Algorithm 1:

4 Experiments and Discussions

In this section, we perform experiments on face databases to demonstrate the efficiency of
HSRC and compare the recognition rate with a 95 percent confidence interval. To evaluate
more comprehensively the performance of HSRC, in Sect. 4.1 we first test FR without occlu-
sion, and then in Sect. 4.2 we demonstrate the robustness and high efficiency of the proposed
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Fig. 1 Illustration of the convergence of HSRC

Algorithm 1 Heteroscedastic sparse representation based classification

Step 1: Input m training samples A ∈ �n×m partitioned into k classes, and a test sample y

Step 2: Compute initial coefficient x = (AT A)−1 AT y by ordinary least squares estimation

Step 3: Compute the residual ε=y − Ax

Step 4: Compute the heteroscedastic weights

First heteroscedastic term σi can be achieved by Eq. 13, then heteroscedastic weight W can be obtained by:

W = diag(σ−1
1 , σ−1

2 , . . . , σ−1
n )

Step 5: Compute the coefficient of the model.

x̂ = (AT W A + λ)−1 AT W y where λ is positive scalar.

Step 6: Go back to step 3 until the maximum number of iterations is reached or the condition
of convergence is met.
Step 7: Compute the residuals

r j (y) = ∥∥y − Aδ j (x̂)
∥∥

2 , for j = 1,2, . . . k.

where δ j (x) is the characteristic function which selects the coefficients associated with the j-th class.

Step 8: Output that identity(y) = argmin r j (y).

method to random block occlusion. Finally in Sect. 4.3 we test FR against real face disguise
occlusion. To evaluate the proposed HSRC method, we systematically compare it with the
SVM (support vector machine), SRC, GSRC (Gabor-SRC) method in real-work database:
Extended Yale B [8], AR [20]. In the experiments, we adopted cross-validation strategy for
recognition. The data set was splitted into two parts. One part was taken for training, and
the other part would be used for testing. The experiments demonstrate good results can be
achieved by HSRC when λ is assigned a small positive value from 0.000001 to 0.1. For
simplicity, the parameter λ is set as 0.001 by default.
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Table 1 Accuracy and running time on extended Yale B database

SVM SRC GSRC HSRC

Dimensions (d = 50)

Accuracy 93.42% 93.59% 94.78% 96.22%

Training time 0.0072 0.0039 0.0983 0.0048

Testing time 0.0002 2.1046 2.7623 0.5233

Total time 0.0074 2.1085 2.8606 0.5281

Dimensions (d = 100)

Accuracy 94.32% 95.07% 96.87% 97.31%

Training time 0.0074 0.0040 0.0994 0.0151

Testing time 0.0004 3.1842 3.8668 0.5823

Total time 0.0078 3.1882 3.9962 0.5974

Dimensions (d = 200)

Accuracy 96.64% 97.04% 98.23% 98.89%

Training time 0.0076 0.0041 0.1001 0.0359

Testing time 0.0009 8.0362 10.230 0.6771

Total time 0.0085 8.0403 10.3301 0.7130

The bold value indicates the best accuracy rate

4.1 Face Recognition Without Occlusion

(1) The Extended Yale B dataset consists of 2,414 frontal face images of 38 subjects. They
are captured under various lighting conditions and cropped and normalized to 192 ×
168 pixels. The face images were captured under various illumination conditions. We
randomly split the database into two halves. One half (about 32 images per person)
was used for training, and the other half for testing. The images are reduced to 50, 100,
200 dimensions, respectively. Here, for computational convenience, the size of image
is cropped to 32 × 32. Here we set β= 0.8. Table 1 illustrates the face recognition rates
and running times under different methods. We can see that the recognition rates and
running times increase with the larger dimensions. Our HSRC method achieves a rec-
ognition rate between 96.22% and 98.89%, much better than the other methods. More
importantly both training time and testing time are greatly reduced compared with SRC
and GSRC.

(2) The AR dataset consists of over 3,000 frontal images of 126 individuals. There are 26
images of each individual, taken at two different occasions. The faces in AR contain
variations such as illumination change, expressions and facial disguises. We selected
100 subjects (50 male and 50 female) for out experiments. For each subject, we ran-
domly take the first half for training and the rest for testing. Some AR images are shown
as Figure 2. Here, for computational convenience, the size of image is cropped to 33 ×

Fig. 2 All the 14 images of the first person in the subset of AR. The first seven images are from the first
session, and the last seven images are from the second session
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Table 2 Accuracy and running time on AR database

SVM SRC GSRC HSRC

Dimensions (d = 50)

Accuracy 68.57% 82% 83.14% 86.05%

Training time 0.0071 0.0083 0.2492 0.0098

Testing time 0.0002 0.9380 1.8065 0.5710

Total time 0.0073 0.9463 2.0557 0.5808

Dimensions (d = 100)

Accuracy 72.57% 89% 91.29% 93.43%

Training time 0.0073 0.0086 0.2469 0.0301

Testing time 0.0002 0.9720 2.4001 0.6388

Total time 0.0075 0.9806 2.6470 0.6689

Dimensions (d = 200)

Accuracy 74.71% 92.29% 93.43% 95.81%

Training time 0.0079 0.0094 0.2427 0.0723

Testing time 0.0004 1.2989 3.1371 0.7081

Total time 0.0083 1.3083 3.3798 0.7804

The bold value indicates the best accuracy rate

24. Here we setβ= 0.9. Table 2 shows the recognition rates for this experiment. HSRC
achieves accuracy rate of 95.81% with 200 dimensional feathers, higher than the other
methods, e.g., 74.71% for SVM, 92.29% for SRC, 93.43% for SRC, while the run-
ning times of HSRC have great advantage over the other sparse representation method
(Table 3).

4.2 Face Recognition with Block Occlusion

The next one is more challenging, we test the efficiency of HSRC to the block occlusion
using the Extended Yale B face dataset. We randomly take the first half for training and the
rest for testing. We simulate various levels of contiguous occlusion, from 30% to 50%, by
replacing a randomly located square block of each test image with an unrelated image, Again,
the location of occlusion is randomly chosen for each image and is unknown to the computer.
A test example of Extended Yale B with 30% occluded block is shown as Figure 3. Here, for
computational convenience, the size of image is cropped to 32 × 32. Here we set β= 0.8. The
results of the experiments are more exciting, and listed in Table 3. The accuracy rate of all
the methods decline with the occlusion levels increasing, which indicates that loss of feature
affects the face recognition performance. But HSRC preserves good performance of 63.92%
when the occlusion percentage is 50%. Moreover HSRC is significantly about 9 times faster
than SRC, while more than about 33% improvement in recognition rate. The results lie in
the facts that SRC need a large occlude dictionary, while HSRC does not need one.

4.3 Face Recognition with Disguise

A subset from the AR database consists of 1399 images from 100 subjects, 50 male and 50
female. For training, we use 799 images (about 8 per subject) of unoccluded frontal views
with varying facial expression, and we consider two separate test sets of 200 images. For
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Table 3 Accuracy and running time under different levels of block occlusion

SRC GSRC HSRC

Occlusion (30%)

Accuracy 81.5% 82.7% 83.34%

Training time 0.0269 0.1002 0.0131

Testing time 63.5033 11.8324 0.7201

Total time 63.5302 11.9326 0.7332

Occlusion (40%)

Accuracy 60.61% 65.41% 66.72%

Training time 0.0279 0.1011 0.0129

Testing time 63.3135 10.9461 0.7122

Total time 63.3414 11.0472 0.7252

Occlusion (50%)

Accuracy 47.86% 59.81% 63.92%

Training time 0.0283 0.1015 0.0127

Testing time 63.1444 10.9355 0.6901

Total time 63.1727 11.0370 0.7028

The bold value indicates the best accuracy rate

Fig. 3 An test example of Extended Yale B with 30% occluded block
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testing, we consider two separate test sets of 200 images. The first test set contains images of
the subjects wearing sunglasses, which occlude roughly 20% of the image. The second test
set contains images of the subjects wearing a scarf, which occludes roughly 40% of the image.
For computational convenience, all the images were resized to 33 × 24. Here we set β= 0.9.

Figure 4 shows the face recognition results of three different methods under sunglasses
and scarves. The test set with sunglasses only occlude roughly 20% of the image, so all
the methods achieve good performance. Especially about 8% improvement is obtained by
HSRC. In the test set with scarves, all the method decline greatly, but HSRC still preserve
80.5% recognition rate, which demonstrate our method is more robust than other methods.

5 Conclusion

This paper proposed a novel method, called Heteroscedastic sparse representation based
classification (HSRC). The HSRC method is attractive due to its robustness and its high effi-
ciency. On the one hand, HSRC is robust to various types outliers (i.e., occlusion, corruption,
expression, etc.) because heteroscedastic correction have been adopted for homoscedastic-
ity by weighting various residual with heteroscedastic estimation. On the other hand, HSRC
reduces greatly running times owing to avoiding a large occlude dictionary. The experimental
results on Extended Yale B and AR database show that HSRC consistently outperforms the
classical methods.
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