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Abstract Based on the classification rule of sparse representation-based classification
(SRC) and linear regression classification (LRC), we propose the maximum nearest subspace
margin criterion for feature extraction. The proposed method can be seen as a preprocessing
step of SRC and LRC. By maximizing the inter-class reconstruction error and minimizing the
intra-class reconstruction error simultaneously, the proposed method significantly improves
the performances of SRC and LRC. Compared with linear discriminant analysis, the pro-
posed method avoids the small sample size problem and can extract more features. Moreover,
we extend LRC to overcome the potential singular problem. The experimental results on the
extended Yale B (YALE-B), AR, PolyU finger knuckle print and the CENPARMI handwritten
numeral databases demonstrate the effectiveness of the proposed method.

Keywords Feature extraction · Dimensionality reduction · Face recognition ·
Finger knuckle print recognition · Linear regression classification

1 Introduction

Recently, the classifications based on reconstruction errors [1–6] have attracted a lot of
researchers. Among the existing reconstruction errors based classifications, the most popular
ones are SRC [5] and LRC [6]. The main difference between SRC and LRC is the recon-
struction strategy. Let us take face recognition for example. SRC, which is based on sparse
representation, represents a face image as a sparse combination of all the face images. Dif-
ferently, based on linear regression model, LRC represents a face image as a linear com-
bination of all the face images from one class. Although SRC and LRC have different
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reconstruction strategies, their classification rules are based on the same assumption: the
probe image belongs to the class with the minimum reconstruction error. Suppose x is a
probe image and x̂i (i = 1, 2, . . . , c) is the reconstructed image by the i th class. The distance
from x to the i th class is defined as di = ∥

∥x − x̂i
∥
∥2. Then the label of x will be assigned as

the class with the minimum reconstruction error min
i

di (x).

Unfortunately, although SRC and LRC have been successfully applied for face recogni-
tion, we notice the performances of SRC and LRC degrade severely under the illuminations
and noises conditions. That means the intra-class reconstruction errors are probably larger
than the inter-class reconstruction errors when the images contains variations of illumina-
tions and noises. In other words, the classification rule of SRC and LRC may not hold well
in the original space. To achieve a high performance, a good classification rule considers
the characteristics of the feature space. Therefore, a classifier works more effectively only
the feature space fits for the classification rule of the classifier. Then a question is: what is
the optimal feature space for SRC and LRC?

Intuitively, the optimal feature space can fit for the classification rule of SRC and LRC as
far as possible. To the best of our knowledge, most of the existing feature extraction meth-
ods such as [7–15] are designed based on the data structures rather than the classifications.
Without considering the classification rule of SRC and LRC, the feature subspaces learned
by the above methods may not hold the assumption of SRC and LRC well. Therefore, the
performances of SRC and LRC potentially degrade. To enhance the performances of SRC
and LRC, we propose the maximum nearest subspace margin criterion (MNSMC) according
to the classification rules of SRC and LRC. Based on MNSMC, a new feature extractor is
developed to find the optimal feature subspace for SRC and LRC.

The rest of the paper is organized as follows. Related works are reviewed in Sect. 2. In
Sect. 3, MNSMC is described in detail. In Sect. 4, the experiments are presented on the
well-known databases to demonstrate the effectiveness of the proposed method. Finally,
conclusions are drawn in Sect. 5.

2 Related Works

In this section, we briefly review SRC and LRC. Suppose x j
i ∈ R

n(i = 1, 2, . . . , c, j =
1, 2, . . . , ni ) is the j th sample from the i th class and Xi = [x1

i , x2
i , . . . , xni

i ] is a set of all the
samples from the i th class. Let X = [X1, X2, . . . , Xc] be the set of original training samples.

2.1 Sparse Representation-Based Classification

SRC considers sparse representation has natural discriminating power: taking face images
into account, the most compact expression of a certain face image is generally given by the
face images from the same class [5].

Denote by z a probe image. We represent z in a overcomplete dictionary whose basis
vectors are training sample themselves, i.e.,

z = Xβ (1)

The sparsest solution to Eq. (1) can be sought by solving the following optimization problem:

β̂ = arg min ‖β‖0 , subject to z = Xβ (2)

where ‖·‖0 denotes the L0-norm, which counts the number of nonzero entries in a vector.
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Recent research efforts reveal that for certain dictionaries, if the solution β̂ is sparse enough,
finding the solution of the L0 optimization problem is equivalent to finding the solution to
the following L1 optimization problem [16–18]:

β̂ = arg min ‖β‖1 , subject to z = Xβ (3)

Then find the class with the minimum reconstruction error

identity (z) = arg min
i

{εi } (4)

where εi = ∥
∥z − Xi β̂i

∥
∥

2
, β̂ = [

β̂1; β̂2; . . . ; β̂c
]

and β̂i is the coefficient vector associated
with class i .

2.2 Linear Regression Classification

LRC is based on the assumption that samples from a specific object class lie on a linear
subspace. Using this concept, a linear model is developed. In this model, a probe image is
represented as a linear combination of class-specific samples. Thereby the task of recognition
is defined as a problem of linear regression. Least-squares estimation (LSE) [19–21] is used
to estimate the reconstruction coefficients for a given probe image against all class models.
Finally, the label is signed as the class with the most precise estimation.

Suppose z is a probe sample from the i th class, it should be represented as a linear com-
bination of the images from the same class (lying on the same subspace), i.e.,

z = Xiβi (5)

where βi ∈ Rni ×1 is the reconstruction coefficients. Given that n ≥ ni , the system of equa-
tions in Eq. (5) is well conditioned and can be estimated by LSE:

β̂i =
(

XT
i Xi

)−1
XT

i z (6)

The probe sample can be reconstructed by Eq. (7):

ẑi = Xi β̂i = Xi

(

XT
i Xi

)−1
XT

i z (7)

The label is signed as the class with the minimum reconstruction error, i.e.,

identity (z) = arg min
i

∥
∥z − Xi β̂i

∥
∥

2
(8)

3 Feature Extraction by Maximum Nearest Subspace Margin Criterion

3.1 Motivation

In the application of face recognition, SRC and LRC demonstrate impressive results. When
we investigate the misclassification, we find the variation of illuminations can significantly
affect the classification results. An intuitive example is provided in Fig. 1 to state this problem.
On the YALE-B face database, we select four face images of the first class under different
illumination conditions. According to the classification rule of SRC and LRC, the face image
can be classified correctly when the reconstruction error of the first class is minimal. How-
ever, taking LRC for example, as can be seen in Fig. 1, only the face image with the frontal
illumination (Fig. 1a) has the minimum intra-class reconstruction error. In an extreme case,
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Fig. 1 The reconstruction errors of four images of the first class under the different illumination conditions
on the YALE-B database

i.e., the face image with the backlight illumination (Fig. 1d), the intra-class reconstruction
error is even larger than most of the inter-class reconstruction errors.

The above example indicates the original image space is not suitable for classification due
to the variations of illuminations. To solve this problem, we aim to find a feature subspace to
reduce the impact of illuminations and enhance the performance of SRC and LRC. Accord-
ing to the classification rule of SRC and LRC, the feature subspace with larger inter-class
reconstruction errors and smaller intra-class errors will lead to a good performance. To find
the optimal feature subspace, we develop MNSMC for feature extraction.

3.2 Maximum Nearest Subspace Margin Criterion

In this section we will introduce our MNSMC in detail. First let us introduce some notations
and preliminary definitions.

Let x j
i ∈ R

n(i = 1, 2, . . . , c, j = 1, 2, . . . , ni ) be the j th sample from the i th class and
Xi = [x1

i , x2
i , . . . , xni

i ] is a set of all the samples from the i th class. Based on the reconstruc-
tion errors, we first define the nearest subspace.

Definition 1 (Nearest subspace). For a given sample x j
i , its nearest subspace N j

i is the sub-

space spanned by the class with the minimum reconstruction error of x j
i .

To introduce the label information, we further define the two types of nearest subspaces.
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Definition 2 (Homogeneous nearest subspace). For a given sample x j
i , its homogeneous

nearest subspace is the subspace spanned by the i th class.

Definition 3 (Heterogeneous nearest subspace). For a given sample x j
i , its heterogeneous

nearest subspace is the subspace spanned by the class with the minimum inter-class recon-
struction error of x j

i .

Before describe the nearest subspace margin, we provide a way to compute the two types of
distances: the point-to-intra-class distance and the point-to-inter-class distance. In this paper,
we focus on the reconstruction errors. Thus, the point-to-intra-class distance is defined as the
intra-class reconstruction error:

εi j =
∥
∥
∥x j

i − X̃i jβ
j
i

∥
∥
∥

2
(9)

where X̃i j = [x1
i , x2

i , . . . , x j−1
i , x j+1

i , . . . , xni
i ] indicates x j

i is excluded from Xi and β
j
i is

the reconstruction coefficient vector obtained from LSE, i.e.,

β
j
i =

(

X̃T
i j X̃i j

)−1
X̃T

i j x
j
i (10)

For each x j
i , we can find its k heterogeneous nearest subspaces Ne

i j . The point-to-inter-class
distance is defined as:

ηi j =
∑

Xm∈Ne
i j

∥
∥
∥x j

i − Xmβ
j
m

∥
∥
∥

2

∣
∣
∣Ne

i j

∣
∣
∣

(11)

where |·| represents the cardinality of a set, Xm is one of the k heterogeneous nearest subspaces
and β

j
m is the reconstruction coefficient vector.

Based on the point-to-intra-class and the point-to-inter-class distance, we can define the
nearest subspace margin.

Definition 4 (Nearest subspace margin). The nearest subspace margin γ
j

i for x j
i is defined

as follows.

γ
j

i = ηi j − εi j (12)

This margin measures the distances from x j
i to its own class and similar heterogeneous clas-

ses. According to the classification rule of SRC and LRC, a large ηi j and a small εi j , i.e., a

large γ
j

i , indicate x j
i is easy to be classified correctly. Then the total nearest subspace margin

for the whole data set is defined to be as follows

Definition 5 (Total nearest subspace margin). The total nearest subspace margin γ for all
the samples is defined as:

γ =
∑

i

∑

j

γ
j

i =
∑

i

∑

j

(

ηi j − εi j
) =

∑

i

∑

j

ηi j −
∑

i

∑

j

εi j (13)

Geometrically,
∑

i
∑

j ηi j measures the class separability and
∑

i
∑

j εi j measures the com-
pactness of the intra-class samples. From the definitions, a large

∑

i
∑

j ηi j and a small
∑

i
∑

j εi j , i.e., a large γ , will lead to a good separability.
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3.3 Linear Feature Extraction

When performing dimensionality reduction, we aim to find a mapping W= [w1, w2, . . . , wd ]
∈ R

n×d from the original space to some feature space such that γ is maximized after the
transformation, i.e.,

W = arg max
W

γ (W) (14)

Let y j
i = WT x j

i be the image of x j
i in the projected subspace. Then

∑

i

∑

j

∑

Xm∈Ne
i j

∥
∥
∥y j

i − Ymβ
j
m

∥
∥
∥

2

∣
∣
∣Ne

i j

∣
∣
∣

=
∑

i

∑

j

∑

Xm∈Ne
i j

∥
∥
∥WT x j

i − WT Xmβ
j
m

∥
∥
∥

2

∣
∣
∣Ne

i j

∣
∣
∣

=
∑

i

∑

j

∑

Xm∈Ne
i j

(

WT x j
i − WT Xmβ

j
m

)T (

WT x j
i − WT Xmβ

j
m

)

∣
∣
∣Ne

i j

∣
∣
∣

= tr

⎛

⎜
⎝

∑

i

∑

j

∑

Xm∈Ne
i j

(

WT x j
i − WT Xmβ

j
m

) (

WT x j
i − WT Xmβ

j
m

)T

∣
∣
∣Ne

i j

∣
∣
∣

⎞

⎟
⎠

= tr

⎛

⎜
⎝WT

⎧

⎪⎨

⎪⎩

∑

i

∑

j

∑

Xm∈Ne
i j

(

x j
i − Xmβ

j
m

) (

x j
i − Xmβ

j
m

)T

∣
∣
∣Ne

i j

∣
∣
∣

⎫

⎪⎬

⎪⎭

W

⎞

⎟
⎠

= tr
(

WT SR
b W

)

where tr (·) is the notation of trace operator and

SR
b =

∑

i

∑

j

∑

Xm∈Ne
i j

(

x j
i − Xmβ

j
m

) (

x j
i − Xmβ

j
m

)T

∣
∣
∣Ne

i j

∣
∣
∣

(15)

Similarly,

∑

i

∑

j

∥
∥
∥y j

i − Ỹijβ
j
i

∥
∥
∥

2

=
∑

i

∑

j

∥
∥
∥WT x j

i − WT X̃i jβ
j
i

∥
∥
∥

2

= tr

⎛

⎝
∑

i

∑

j

(

WT x j
i − WT X̃i jβ

j
i

) (

WT x j
i − WT X̃i jβ

j
i

)T

⎞

⎠
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= tr

⎛

⎝WT

⎧

⎨

⎩

∑

i

∑

j

(

x j
i − X̃i jβ

j
i

) (

x j
i − X̃i jβ

j
i

)T

⎫

⎬

⎭
W

⎞

⎠

= tr
(

WT SR
wW

)

where

SR
w =

∑

i

∑

j

(

x j
i − X̃i jβ

j
i

) (

x j
i − X̃i jβ

j
i

)T
(16)

The total nearest subspace margin in the projected subspace changes to:

γ (W) = tr
(

WT
(

SR
b − SR

w

)

W
)

=
d

∑

k=1

wT
k

(

SR
b − SR

w

)

wk (17)

To eliminate the freedom, we add the constraint wT
k wk = 1.

Thus the goal of MNSMC is to solve the following optimization problem:

max
d∑

k=1
wT

k

(

SR
b − SR

w

)

wk

subject to wT
k wk = 1

(18)

It is easy to prove the optimal solution W is composed of the d eigenvectors corresponding
to the d largest eigenvalues of Eq. (19).

(

SR
b − SR

w

)

w = λw (19)

Compared with LDA, the proposed method does not needs to compute the inverse of SR
w.

Therefore, MNSMC avoids the small sample size (SSS) problem and can extract more fea-
tures [9].

To show the effectiveness of MNSMC, we recalculate the reconstruction errors of the four
images as shown in Fig. 1 in the MNSMC’s subspace and illustrate the results in Fig. 2. As
can be seen in Fig. 1, only one face image has the smallest intra-class reconstruction error. But
in Fig. 2, we can find the intra-class reconstruction errors are significantly smaller and three
face images in Fig. 2 have the minimum intra-class reconstruction errors. The experimental
results indicate that MNSMC can reduce the impact of the illuminations and improve the
performances of SRC and LRC.

Note that, in Eq. (10), when the training number ni of the i th class is larger than the dimen-
sion of x j

i , the matrix X̃T
i j X̃i j is singular. Thus the inverse of X̃T

i j X̃i j can not be calculated
directly. In this case, we can apply ridge regression (RR) [22,23] to solve the singularity
problem. Different from LSE, RR aims to minimize the following cost function:

min

(∥
∥
∥x j

i − X̃i jβ
j
i

∥
∥
∥

2 + λ

∥
∥
∥β

j
i

∥
∥
∥

2
)

(20)

where λ is a positive factor to reduce the solution space.
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Fig. 2 The reconstruction errors of four images of the first class under the different illumination conditions
in the MNSMC’s subspace

The cost function can be rewritten as:
∥
∥
∥x j

i − X̃i jβ
j
i

∥
∥
∥

2 + λ

∥
∥
∥β

j
i

∥
∥
∥

2

=
(

x j
i − X̃i jβ

j
i

)T (

x j
i − X̃i jβ

j
i

)

+ λ
(

β
j
i

)T
β

j
i

=
((

x j
i

)T
x j

i +
(

β
j
i

)T
X̃T

i j X̃i jβ
j
i − 2

(

β
j
i

)T
X̃T

i j x
j
i

)

+ λ
(

β
j
i

)T
β

j
i

Taking derivatives and equaling them to zero, then the optimal solution of the cost function
can be obtained as follows.

β
j
i =

(

X̃T
i j X̃i j + λI

)−1
X̃T

i j x
j
i (21)

where I is the identity matrix. It is easy to prove X̃T
i j X̃i j + λI is nonsingular.

As can be seen in Eq. (6), similar to MNSMC, LRC also suffers from the singularity
problem. Using RR instead of LSE, Eq. (6) can be rewritten as:

β̂i =
(

XT
i Xi + λI

)−1
XT

i y (22)
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Table 1 The algorithm of
MNSMC

Input: Column sample matrix X, the nearest subspace size k
Output: Transform matrix W
Step 1: Construct SR

w and SR
b using X.

Step 2: Solve the generalized eigenvectors of
(

SR
b − SR

w

)

w = λw and con-

struct W = {w1, w2, . . . , wd } corresponding to the d largest eigenvalues.
Step 3: Output W.

Table 2 The details of the four databases

Database Size Number of classes Number of samples per class Number of training sample per class

YALE-B 32×32 38 64 10
AR 50×40 120 26 5
FKP 55×110 100 12 5
CENPARMI 121 10 600 200

Based on RR, we extend LRC to any cases without limits. And the modified LRC is called
ridge regression classification (RRC) in this paper.

3.4 The Algorithm of MNSMC

The main steps of MNSMC is summarized in Table 1.

4 Experiments

To evaluate the performance of the proposed method, we compare it with three feature extrac-
tion methods, i.e., principal component analysis (PCA) [24], LDA and (MMC) [25] over three
classifiers, i.e., nearest neighbor classifier (NNC) [26], SRC and LRC, on four well-known
databases. The details of the databases are summarized in Table 2. As a baseline, we directly
employ NNC, SRC and LRC to classify the raw data. Then we investigate whether MNSMC
can enhance the performances of SRC and LRC. We also compare MNSMC with PCA, LDA
and MMC to find which feature subspace is more suitable for SRC and LRC. The NNC is used
to compare with SCR and LRC to determine which classifier is more suitable for MNSMC.
Note that LDA can extract at most c − 1 features due to the characteristic (c is the total
number of the classes). Therefore, the dimension of LDA is limited to a value in the figures.

4.1 Parameter Selection

For efficiency, on the YALE-B, AR and FKP databases, PCA is first applied to reduce the
dimensionality. Then the experiments are performed on the 150-dimensional PCA subspaces.
On the YALE-B, AR and FKP databases, there is only one model parameter, i.e., k hetero-
geneous nearest subspace. And on the CENPARMI database, the parameter λ is introduced
to overcome the singularity problem. In the experiments, the values of the parameters are
empirically set as in Table 3.

4.2 Face Recognition

The YALE-B database [27–29] consists of 2432 frontal face images of 38 subjects under var-
ious lighting conditions. The database was divided in five subsets: subset 1 consisting of 266
images (seven images per subject) under nominal lighting conditions was used as the gallery.

123



Y. Chen et al.

Table 3 The parameter settings of the four databases

Database PCA dimensions k λ

YALE-B 150 1 None
AR 150 1 None
FKP 150 10 None
CENPARMI 120 1 0.01

Table 4 The average maximal recognition rates on the YALE-B database

Baseline PCA LDA MMC MNSMC

NNC 44.3±1.0 43.1±1.0 80.0±1.4 79.7±1.4 70.8±2.0
SRC 86.2±1.1 87.7±0.8 85.4±1.2 85.2±1.3 88.3±1.1
LRC 81.7±1.0 83.2±1.3 84.1±1.1 87.6±1.0 91.1±0.9

Significance of bold are the highest recognition rates of the corresponding classifiers

Fig. 3 Sample images of one person from the YALE-B face database

Subsets 2 and 3, each consisting of 12 images per subject, characterize slight-to-moderate
luminance variations, while subset 4 (14 images per person) and subset 5 (19 images per
person) depict severe light variations. The images are also grayscale and normalized to a
resolution of 32×32 pixels. Sample images of one person from the YALE-B face database
are shown in Fig. 3. We randomly choose 10 samples images from all the subsets and the
rest sample images are used for test. This procedure is repeated for 50 times. The average
recognition rates and the corresponding standard deviation are indicated in Table 4. And the
recognition rates versus the dimensions are illustrated in Figs. 4, 5 and 6.

The AR face database [30,31] contains over 4,000 color face images of 126 people (70
men and 56 women), including frontal views of faces with different facial expressions, light-
ing conditions and occlusions. The pictures of most persons were taken in two sessions
(separated by two weeks). Each section contains 13 color images and 120 individual s (65
men and 55 women) participated in both sessions. The images of these 120 individuals were
selected and used in our experiment. We manually cropped the face portion of the image
and then normalized it to 50×40 pixels. Sample images of one person from the AR face
database are shown in Fig. 7. We randomly choose 5 samples images from each person and
the rest sample images are used for test. This procedure is repeated for 50 times. The average
recognition rates and the corresponding standard deviation are indicated in Table 5.

And the recognition rates versus the dimensions are illustrated in Figs. 8, 9 and 10.

4.3 Finger Knuckle Print Recognition

In PolyU FKP database [32–34], FKP images were collected from 165 volunteers, includ-
ing 125 males and 40 females. Among them, 143 subjects were 20–30 years old and the
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Fig. 4 The recognition rates of 4 methods plus LRC on the YALE-B database
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Fig. 5 The recognition rates of 4 methods plus SRC on the YALE-B database

Table 5 The average maximal recognition rates on the AR database

Baseline PCA LDA MMC MNSMC

NNC 59.6±1.3 57.4±1.1 88.6±1.0 84.5±1.1 85.4±1.3
SRC 87.5±0.7 91.8±0.8 90.9±0.7 92.0±0.9 92.4±0.5
LRC 74.8±1.3 72.5±0.4 90.4±1.1 88.4±1.0 92.5±0.9

Significance of bold are the highest recognition rates of the corresponding classifiers
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Fig. 6 The recognition rates of MNSMC plus SRC and LRC versus the baselines of SRC and LRC on the
YALE-B database

Fig. 7 Sample images of one person from the AR face database

others were 30–50 years old. The samples were collected in two separate sessions. In each
session, the subject was asked to provide six images for each of the left index finger, the
left middle finger, the right index finger and the right middle finger. Therefore, 48 images
from four fingers were collected from each subject. In total, the database contains 7,920
images from 660 different fingers. The average time interval between the first and the second
sessions was about 25 days. The maximum and minimum time intervals were 96 days and
14 days respectively. All the samples in the database are histogram equalized and resized
to 55×110. Sample images of one person from the FKP database are shown in Fig. 11.
We randomly choose five samples images from each person and the rest sample images are
used for test. This procedure is repeated for 50 times. The average recognition rates and the
corresponding standard deviation are indicated in Table 6. And the recognition rates versus
the dimensions are illustrated in Figs. 12, 13 and 14.
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Fig. 8 The recognition rates of 4 methods plus LRC on the AR database
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Fig. 9 The recognition rates of 4 methods plus SRC on the AR database

Table 6 The average maximal recognition rates on the FKP database

Baseline PCA LDA MMC MNSMC

NNC 86.6±1.4 88.7±1.6 83.5±1.6 88.7±1.6 92.8±1.5
SRC 86.6±1.1 91.7±1.2 91.4±1.2 93.0±0.8 93.8±0.9
LRC 86.1±1.2 91.5±1.4 92.4±1.3 91.3±1.2 94.5±1.2

Significance of bold are the highest recognition rates of the corresponding classifiers

123



Y. Chen et al.

0 50 100 150
50

55

60

65

70

75

80

85

90

95

Dimensions

R
ec

og
ni

tio
n 

ra
te

s

SRC

LRC

MNSMC+LRC

MNSMC+SRC

Fig. 10 The recognition rates of MNSMC plus SRC and LRC versus the baselines of SRC and LRC on the
AR database

Fig. 11 Sample images of the right index finger from one individual

4.4 Handwritten Numeral Recognition

The Concordia University CENPARMI handwritten numeral database [35] is used to test
the performance of MNSMC plus RRC. The database contains 10 numeral classes and each
class has 600 samples. In our experiment, we randomly choose 200 samples of each class for
training, the remaining 400 samples for testing. Thus, the total number of training samples is
2,000 while the total number of testing samples is 4000. Since the dimensionality of one digit
(121) is less than training samples (200) of one class, LRC fails under this circumstance.
So RRC is employed in this experiment. The recognition rates versus the dimensions are
illustrated in Figs. 15, 16 and 17.
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Table 7 The recognition rates on the four subsets using different methods and classifiers

Subset2 Subset3 Subset4 Subset5

NNC SRC LRC NNC SRC LRC NNC SRC LRC NNC SRC LRC

PCA 90.1 100 100 41.5 98.6 98.6 15.8 74.0 76.2 8.2 26.1 30.4
LDA 99.8 100 100 94.3 99.8 98.6 22.8 56.3 62.8 7.6 20.7 25.6
MMC 95.8 100 100 66.2 99.6 99.6 12.5 61.4 67.2 7.4 17.6 22.3
MNSMC 99.3 100 100 73.8 100 100 16.8 83.4 88.3 10.2 33.6 39.8

Significance of bold are the highest recognition rates of the corresponding classifiers
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Fig. 12 The recognition rates of 4 methods plus LRC on the FKP database
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Fig. 13 The recognition rates of 4 methods plus SRC on the FKP database
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Fig. 14 The recognition rates of MNSMC plus SRC and LRC versus the baselines of SRC and LRC on the
FKP database

0 20 40 60 80 100 120
45

50

55

60

65

70

75

80

85

90

95

Dimensions

R
ec

og
ni

tio
n 

ra
te

s

PCA+RRC

LDA+RRC

MMC+RRC

MNMSC+RRC

Fig. 15 The recognition rates of 4 methods plus LRC on the CENPARMI database

4.5 Face Recognition Under illumination and noise conditions

Further experiments on the YALE-B face database are conducted to investigate the perfor-
mance of MNSMC under illumination and noise condition.

The YALE-B was divided into five subsets according to the illumination directions. Sam-
ple images of one person from the subsets are shown in Fig. 18. We follow the evaluation
protocol as reported in [28,36]. Training is conducted using subset 1 and the system is
validated on the remaining subsets. The experimental results are listed in Table 7.
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Fig. 16 The recognition rates of 4 methods plus SRC on the CENPARMI database
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Fig. 17 The recognition rates of MNSMC plus SRC and LRC versus the baselines of SRC and LRC on the
CENPARMI database

In the next set of experiments we contaminate the face images in the subset2 with salt and
pepper noise [37]. Figure 19 reflects face images distorted with various degrees of salt and
pepper noise. The experimental results can be found in Table 8.

4.6 Discussions

From the experimental results, we can draw the following conclusions:

(1) Since the Yale-B and AR databases contain illuminations, occlusions and expressions,
the recognition rates are not quite good when classifiers are directly applied on the raw
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Table 8 The recognition rates on the subsets2 using different methods and classifications

Density 20 % 40 % 60 % 80 %

NNC SRC LRC NNC SRC LRC NNC SRC LRC NNC SRC LRC

PCA 90.0 100 100 80.3 95.3 93.2 43.6 76.4 51.1 18.2 20.1 16.2
LDA 99.1 100 100 86.6 98.7 96.4 40.8 85.1 61.5 11.4 23.3 15.8
MMC 97.4 100 100 88.3 99.2 96.6 42.6 83.7 56.8 13.8 21.2 15.3
MNSMC 98.3 100 100 92.1 100 98.2 50.7 87.4 65.2 23.7 26.5 25.8

Significance of bold are the highest recognition rates of the corresponding classifiers

Table 9 The average maximal recognition rates on the CENPARMI database

Baseline PCA LDA MMC MNSMC

NNC 88.3±0.3 88.3±0.3 87.4±0.4 90.0±0.4 92.3±0.5
SRC 93.2±0.3 93.0±0.8 88.7±0.7 92.8±0.7 94.5±0.4
RRC 90.4±0.4 90.9±0.4 86.2±0.4 91.7±0.6 94.2±0.5

Significance of bold are the highest recognition rates of the corresponding classifiers

data. More importantly, we find that not all the feature extraction methods are helpful
to the classifiers. As can be seen in Tables 4 and 9, the recognition rates of LDA plus

Fig. 18 Each row represents typical images from subsets 1, 2, 3, 4 and 5, respectively
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Fig. 19 Face image with a 20 %, b 40 %, c 60 %, d 80 % salt and pepper noise density

SRC are lower than the corresponding baselines. That means selecting an appropriate
feature extraction method is very important to a specific classifier.

(2) Since MNSMC is designed according to the classification rule of SRC and LRC, it
matches SRC and LRC perfectly. As can be seen in Figs. 6, 10, 14, and 17, the recogni-
tion rates of MNSMC plus SRC or LRC are consistently higher than the corresponding
baselines. Meanwhile, we observe MNSMC plus LRC outperforms MNSMC plus SRC
on the YALE-B, AR and FKP databases. As we introduced above, SRC and LRC are
based on different reconstruction strategies. In the proposed method, MNSMC shares
the same reconstruction strategy with LRC. Thus, MNSMC plus LRC performs better
in most of the experiments.

(3) Compared with PCA, LDA and MMC, MNSMC is the best feature extraction method
for SRC and LRC. As can be seen in Figs. 4, 5, 8, 9, 12, 13, 15, and 16, MNSMC plus
SRC and LRC consistently outperform other combinations. As MNSMC considers the
reconstruction error, it perfectly fits the classification rule of SRC and LRC. Therefore,
MNSMC performs better than other feature extraction methods.

(4) The experimental results also indicate, compared with SRC and LRC, NNC is not very
suitable for MNSMC. Technically, NNC assumes a sample and its nearest neighbor are
in the same class. However, MNSMC considers the nearest subspace rather than the
nearest neighbor. Therefore, MNSMC may not match NNC perfectly.

5 Conclusions

In this paper, according to the classification rule of SRC and LRC, a new feature extractor
based on MNSMC is proposed. By maximizing the inter-class reconstruction error and min-
imizing the intra-class reconstruction error simultaneously, the proposed method improves
the performances of SRC and LRC significantly. Our method avoids the SSS problem and
can extract more features than LDA. Moreover, based on RR, we develop RRC to overcome
the potential singular problem of LRC. The experimental results on the YALE-B, AR, FKP
and the CENPARMI handwritten numeral databases show the effectiveness of the proposed
method.
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