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Abstract In many real-world applications, labeled data

are usually expensive to get, while there may be a large

amount of unlabeled data. To reduce the labeling cost,

active learning attempts to discover the most informative

data points for labeling. The challenge is which unlabeled

samples should be labeled to improve the classifier the

most. Classical optimal experimental design algorithms are

based on least-square errors over the labeled samples only

while the unlabeled points are ignored. In this paper, we

propose a novel active learning algorithm called neigh-

borhood preserving D-optimal design. Our algorithm is

based on a neighborhood preserving regression model

which simultaneously minimizes the least-square error on

the measured samples and preserves the neighborhood

structure of the data space. It selects the most informative

samples which minimize the variance of the regression

parameter. We also extend our algorithm to nonlinear case

by using kernel trick. Experimental results on terrain

classification show the effectiveness of proposed approach.

Keywords Active learning � Terrain classification �
Optimal experimental design (OED) �
Neighborhood preserving

1 Introduction

For large-scale real problems, such as image retrieval and

terrain classification, there are large numbers of unlabeled

data, while the labeled data are usually difficult to get.

Semi-supervised learning [1–3] makes full use of the

information from both labeled and unlabeled data to

address this problem. Besides, active learning [4, 5] queries

some instances for manual labeling to construct a training

set. In recent years, active learning has gained increasing

interests and demonstrated its effectiveness in various

applications.

In statistics, the problem of selecting samples to label is

usually referred to as experimental design. The sample x is

referred to as experiment and its label y is referred to as

measurement. Optimum experimental design (OED) [6–8]

tries to minimize the variance of a parameter model. Tra-

ditional experimental design approaches include A-optimal

design, D-optimal design, and E-optimal design. But none

of them explore additional information contained in the

unlabeled data.

Besides OED-based active learning approaches, another

important method of active learning is based on support

vector machines (SVMactive) [9, 10]. SVMactive asks the

user to label the points which are closet to the decision

boundary. The disadvantage of SVMactive is that the esti-

mated boundary may not be accurate enough especially

when the number of training examples is small. Moreover,

since it needs an initial decision boundary, it cannot be

applied when there are no labeled data points. Some other

SVM-based active learning algorithms can be found in

[11, 12].

Recently, He [13], Chen [14], and Zhang [15] have

proposed new active learning methods called LapRDD,

LapGOD, and CLapRID, respectively. All of them are

based on Laplacian regularized least squares (LapRLS)

[3, 16] and using different optimality criteria of experi-

mental design. For example, He used graph Laplacian in

the formulation of D-optimal design while Chen used
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graph Laplacian in the formulation of G-optimal design.

Besides, Zhang [17] proposed a new active learning

method based on locally linear reconstruction which out-

performs the classical algorithms. Shen [18] introduced the

idea of column subset selection, which aims to select the

most representation columns from a data matrix, into active

learning and propose a novel active learning algorithm

called CSSactive.

Motivated by recent progresses of neighborhood pre-

serving regression [19] and optimal experimental design,

we propose a novel active learning algorithm called

neighborhood preserving D-optimal design (NPDOD).

Unlike traditional experimental design methods whose loss

functions are only defined on the measured points, the loss

function of our proposed algorithm is defined on both

measured and unmeasured points. Specifically, we use a

loss function which imposes locally linear reconstruction

error into the standard least-square-error-based loss func-

tion. Using techniques from experimental design, we can

select the most informative data points which are presented

to the user for labeling.

The rest of the paper is organized as follows: In Sect. 2,

we provide a brief review of the related work. Our pro-

posed NPDOD algorithm is introduced in Sect. 3. In Sect.

4, we present the nonlinear extension of our algorithm. The

experimental results on terrain classification are presented

in Sect. 5. Finally, we provide some suggestions for future

work in Sect. 6.

2 Related work

Our algorithm is fundamentally based on neighborhood

preserving regression [19]. Also, for regression-based

active learning, the most related work is optimal experi-

mental design [6], including A-optimal design, D-optimal

design, and E-optimal design. In this section, we give a

brief description of these approaches.

The generic problem of active learning can be formal-

ized as follows. Given a set of data points

v ¼ fx1; . . .; xmg, where each xi is a d-dimensional vector,

active learning aims to find a subset Z ¼ z1; . . .; zkf g � v
which contains the most informative points, that is, the

subset Z can improve the classifier most if it is labeled and

used as training data.

Throughout this paper, we use x to denote any point

while z to denote the labeled point.

2.1 Optimum experimental design

We consider a linear regression model

y ¼ wT xþ e ð1Þ

where w is the weight vector, y is the observation, and e is

the measurement noise with zero mean and constant

variance r2. Optimum experimental design attempts to

select the most informative data points to learn a prediction

function f ðxÞ ¼ wT x so that the expected prediction error

can be minimized. Suppose we have a set of labeled sample

points z1; y1ð Þ; . . .; zk; ykð Þ where yi is the label of zi. The

most popular estimation method is least squares, in which

we minimize the residual sum of squares (RSS):

RSS wð Þ ¼
Xk

i¼1

wT zi � yi

� �2 ð2Þ

with some simple algebraic steps, we have

ŵ ¼ ZTZ
� ��1

ZTY ð3Þ

where Y ¼ ðy1; . . .; ykÞT and Z ¼ ½z1; . . .; zk�T . The

estimate ŵ gives us an estimate of the output at a novel

input: ŷ ¼ f xð Þ ¼ wT x, and its covariance can be expressed

as

Cov(ŵÞ ¼ r2 ZTZ
� ��1 ð4Þ

The most informative data points are thus defined as

those minimize the Cov(ŵÞ. The criteria of OED can be

classified into two categories. The first category is to select

points to minimize the size of the parameter covariance

matrix. The three most common criteria are

• D-optimal design: minimizes the determinant of

Cov(ŵÞ
• A-optimal design: minimizes the trace of Cov(ŵÞ
• E-optimal design: minimizes the largest eigenvalue of

Cov(ŵÞ

Some recent work on optimal experiment design can be

found in [7, 20].

In this work, we adopt the similar optimality criterion to

D-optimal design for selecting the most informative data

points.

2.2 Neighborhood preserving regression (NPR) [19]

Recently, Lu proposed a semi-supervised learning algo-

rithm called neighborhood preserving regression (NPR)

which is based on spectral graph theory [21–23] and locally

linear embedding [24, 25]. Different from the standard

regression framework which makes use of only labeled

points, NPR makes use both labeled and unlabeled points.

Specifically, from all the functions which can correctly

classify the labeled samples, NPR selects the one which best

preserves the local neighbor structure. For each sample, it

may be represented as a linear combination of its p nearest

neighbors. A natural assumption is that the label of this
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sample can be computed by the labels of its p nearest

neighbors. Let W be a reconstruction coefficients matrix.

Thus, the NPR algorithm solves the following optimization

problem:

Lðf Þ ¼
Xk

i¼1

ðf ðziÞ � yiÞ2 þ k
Xm

i¼1

f ðxiÞ �
Xm

j¼1

Wijf ðxjÞ
 !2

ð5Þ

The optimal reconstruction coefficients W can be obtained

by solving the following problem:

Min
Pm

i¼1

xi �
Pm

j¼1

Wijxj

�����

�����

2

s:t:
Pm

j¼1

Wij ¼ 1; i ¼ 1; . . .;m

Wij ¼ 0 if xj 62 NpðxiÞ

ð6Þ

Let M ¼ ðI�WÞTðI�WÞ, and I be a m 9 m identity

matrix. The problem can be rewritten in the following form:

Min
Xk

i¼1

ðf ðziÞ � yiÞ2 þ kwT XTMXw ð7Þ

The optimal solution is:

ŵ ¼ ðZTZþ kXTMXÞ�1ZTY ð8Þ

For more details about this algorithm, please see [19].

3 Neighborhood preserving D-optimal design

(NPDOD)

NPR is a passive learning algorithm in which the labeled

and unlabeled samples are both used, and the training

samples are pregiven. We propose a new active learning

algorithm which shares the similar objective function as

NPR but actively selects the samples for labeling. Besides,

regularized least squares [3] are adopted to the algorithm

which has been proved to be more efficient than ordinary

least squares [7]. This is the first work which takes into

account the neighborhood structure by using both labeled

and unlabeled data points in OED. Since labeling resource

is usually limited in some applications, the selected data

points are crucial for training a good classifier.

In this section, we introduce our active learning algo-

rithm which is fundamentally based on NPR and regular-

ized least squares. Thus, the regression parameter can be

obtained by minimizing the following function:

L fð Þ ¼
Xk

i¼1

ðf ðziÞ � yiÞ2

þ k1

2

Xm

i¼1

f xið Þ �
Xm

j¼1

Wijf ðxjÞ
 !2

þk2 f 2
�� �� ð9Þ

where k1 [ 0 and k2 [ 0 are the trade-off parameters, yi is

the label of zi, and W is the reconstruction coefficient

which can be obtained by (6). �k k is the vector ‘2-norm.

The second term of the right-hand side in the cost function

is the total reconstruction error. Since each sample may be

represented as a linear combination of its p nearest

neighbors. Therefore, the label of this sample can be

computed by the labels of its p nearest neighbors. The

reconstruction error should be as small as possible.

Let X ¼ ½x1; . . .; xm�T and M ¼ I�Wð ÞTðI�WÞ. The

solution to minimization problem (9) is given as follows:

ŵ ¼ ðZTZþ k1XTMXþ k2IÞ�1ZTY ð10Þ

3.1 The objective function of NPDOD

Similar to conventional optimal experimental design

techniques, we first compute the parameter covariance

matrix of NPDOD. We define:

H ¼ ZTZþ k1XTMXþ k2I ð11Þ

and

K ¼ k1XTMXþ k2I ð12Þ

By noticing that CovðYÞ ¼ r2I and H is symmetric, the

covariance matrix of ŵ has the expression

Cov ŵð Þ ¼ Cov H�1ZTY
� �

¼ H�1ZTCov Yð ÞZH�1

¼ r2H�1ZTZH�1

¼ r2H�1ðH� KÞH�1

¼ r2ðH�1 �H�1KH�1Þ

ð13Þ

In order to make the estimator ŵ as stable as possible,

the size of covariance matrix Cov(ŵÞ has to be as small as

possible. Different measures of the size of the covariance

matrix lead to different optimality criteria.

In this paper, D-optimal design is applied to select the

most informative samples. Since the regularization param-

eters k1 and k2 are usually set to be very small, we have

H�1 �H�1KH�1
�� �� � H�1

�� �� ð14Þ

So the smaller H�1
�� �� is, the smaller the covariance matrix

is. The problem can be rewritten as follows:

max
Z¼½z1;...;zk �T

Hj j ð15Þ

where z1; . . .; zk are selected from fx1; . . .; xmg.

3.2 The algorithm

In this section, we describe a sequential optimal algorithm

to solve (15), which is similar to the sequential algorithm in

LapRDD [13].
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Suppose a set of k(k [ 0) samples Zk ¼ fz1; . . .; zkg �
v have been selected. Let Zk ¼ ½z1; . . .; zk�T be a k 9 d

matrix. We define

Hk ¼ ZT
k Zk þ k1XTMXþ k2I; k� 1 ð16Þ

and

H0 ¼ k1XTMXþ k2I ð17Þ

The (k ? 1)th sample zk?1 can be selected by solving the

following problems:

zkþ1 ¼ argmax
z2v�Zk

Hk þ zzT
�� �� ð18Þ

By using matrix determinant lemma [26], the determinant

of Hk þ zzT can be written as a multiplicative updated of

the determinant of Hk.

Hk þ zzT
�� �� ¼ Hkj j � 1þ zT H�1

k z
� �

ð19Þ

Since Hkj j is a constant while selecting the (k ? 1)th

sample, (18) can be rewritten as follows:

zkþ1 ¼ argmax
z2v�Zk

zT H�1
k z ð20Þ

The inverse of Hkþ1 can be updated based on the inverse of

Hk after the (k ? 1)th sample is selected. By using the

Sherman–Morrison formula

H�1
kþ1 ¼ ðHk þ zkþ1zT

kþ1Þ
�1

¼ H�1
k �

H�1
k zkþ1zT

kþ1H�1
k

1þ zT
kþ1H�1

k zkþ1

ð21Þ

Above analysis shows that we do not need to compute the

determinant and inverse of covariance matrix. Instead, at

each iteration, we select a new sample z such that maximize

zT H�1
k z and Hk

-1 can be updated efficiently in terms of

(21). The sequential approach is summarized in Table 1.

4 Nonlinear neighborhood preserving D-optimal design

Most of traditional optimal experimental design techniques

are based on linear regression model. However, in many

real-world applications, the data may not be linearly sep-

arable. In this section, we discuss how to generalize our

NPDOD algorithm to nonlinear case by performing

experimental design in reproducing kernel Hilbert space

(RKHS).

Let Kð�; �Þbe a positive definite kernel, and F be the cor-

responding reproducing kernel space. Several popular kernel

functions are Gaussian kernel Kðxi; xjÞ ¼ expð� xi�x2
jk k

r2 Þ;
polynomial kernel Kðxi; xjÞ ¼ ð1þ hxi; xjiÞd; Sigmoid ker-

nel Kðxi; xjÞ ¼ tanhðhxi; xji þ aÞ.

Then, we seek a function f 2 F such that the following

objective function is minimized:

L fð Þf2F¼
Xk

i¼1

ðf ðziÞ � yiÞ2

þ k1

2

Xm

i¼1

f xið Þ �
Xm

j¼1

Wijf ðxjÞ
 !2

þk2 fk k2
f2F

ð22Þ

The representer theorem [3] can be used to show that the

solution is an expansion of kernel functions over both the

labeled and unlabeled data.

f̂ ðxÞ ¼
Xm

i¼1

âiu xið Þ ð23Þ

Let â ¼ ½â1; . . .; âm�T . The optimal solution is

â ¼ ðKXZKZX þ k1KXXMKXX þ k2KXXÞ�1KXZY ð24Þ

with covariance

Cov âð Þ � r2 KXZKZX þ k1KXXMKXXþ k2KXXð Þ�1 ð25Þ

where KXZ is a m 9 k matrix with KXZ;ij ¼Kðxi;zjÞ, KXX is

a m 9 m matrix with KXZ;ij ¼Kðxi;xjÞ and KZX ¼KT
XZ.

The nonlinear problem is defined as follows:

max
Z¼½z1;...;zk �T

KXZKZX þ k1KXXMKXX þ k2KXXj j ð26Þ

where z1; . . .; zk are selected from fx1; . . .; xmg. Let ui be

the ith column vector of KXX, and U be the set of

Table 1 The sequential approach for NPDOD

Input: The candidate data set fx1; . . .; xmg, the number of nearest

neighbor p, the number(k) of samples to be selected and the

parameter k1 and k2

Output: The indexes of the k most representative samples,

Z ¼ fz1; . . .; zkg
1: Initialize W by solving problem (6)

2: M ¼ I�Wð ÞTðI�WÞ
3: Z  ;
4: H ¼ k1XTMXþ k2I

5: for n = 1 to k do

6: for i = 1 to m do

7: if i 62 Z then

8: A ið Þ ¼ xT
i H�1xi

9: end if

10: end for

11: sn ¼ argmaxi 62ZAðiÞ
12: Z  Z

S
sn

13: H�1  H�1 � H�1xsnxT
snH�1

1þxT
snH�1xsn

14: end for

15: return Z
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fu1; . . .; umg. Clearly, ui ¼ ðK xi; x1ð Þ; . . .;K xi; xmð ÞÞT .

Similar to selecting xi in the original space, here we select

ui in kernel space.

Suppose a set of k(k [ 0) samples Vk ¼ fv1; . . .; vmg �
U have been selected. Let Vk ¼ ½v1; . . .; vk�T be a k 9 d

matrix. We define

Pk ¼ KXVk
KVkX þ k1KXXMKXX þ k2KXX ð27Þ

and

P0 ¼ k1KXXMKXX þ k2KXX ð28Þ

The k ? 1th sample vk?1 can be selected by solving the

following problems:

vkþ1 ¼ argmax
v2U�Vk

Pk þ vvT
�� �� ð29Þ

which is equivalent to the following problem by matrix

determinant lemma [26]:

vkþ1 ¼ argmax
v2U�Vk

vT P�1
k v ð30Þ

Similar to the linear algorithm described in Sect. 3.2, the

inverse of Pk can be updated as following:

P�1
kþ1 ¼ P�1

k �
P�1

k vkþ1vT
kþ1P�1

k

1þ vT
kþ1P�1

k vkþ1

ð31Þ

As can be seen, the optimal method of nonlinear

NPDOD is essentially the same as that of linear NPDOD.

The only difference is that the data points xiði ¼ 1; . . .;mÞ
are replaced by uiði ¼ 1; . . .;mÞ.

5 Experiment

In this section, we evaluate the performance of our pro-

posed algorithm for terrain classification. We compare our

algorithm with AOD [6] and TED [7] on a toy example in

Sect. 5.1. In Sect. 5.2, we describe the data set and feature

extraction used in our experiments. The comparative

experimental results are present in Sect. 5.3.

5.1 A toy example

A toy example is given in Fig. 1. The data contain two

circles with random noise added. There are twenty points on

the big circle while ten points on the small circle. We apply

AOD, TED, and our proposed NPDOD to select the most

informative points on the data set. Here, SVMactive cannot

be applied due to the lack of labeled points. Fig. 1 shows

that the points selected by NPDOD can indeed reflect the

manifold structure of the data set. Besides, the points

selected by our NPDOD algorithm can better represent the

data set while both AOD and TED select the points from the

big circle. Even though the points selected by AOD or TED

are labeled, we are still unable to perform classification

since all of labeled points belong to the same class.

5.2 Experimental settings

In this subsection, we describe the experimental settings.

The points selected by active learning or random algorithm

are used as the training data to train a classifier, and the

unselected points are used as the testing data. The classi-

fication accuracy of different training data is used to

measure the performance of each algorithm.

To demonstrate how our proposed algorithm improves

the classification performance, we compare the following

algorithms:

• Random sampling method, which randomly selects

points from the data set as training data.

• Neighborhood preserving regression (NPR) which is a

semi-supervised learning algorithm

• Laplacian regularized D-optimal design (LapRDD)

which is an active learning algorithm combining

experimental design and graph Laplacian.

• Neighborhood preserving D-optimal design (NPDOD)

proposed in this paper.

Random sampling and NPDOD are active learning

algorithms while NPR is a semi-supervised learning algo-

rithm which uses both labeled and unlabeled points. For

NPR, the user is required to label several points which are
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Fig. 1 Data selection by

different active learning

algorithms. The numbers beside

the selected points denote the

orders they were selected.

Obviously, the points selected

by NPDOD can better represent

the original data set. a AOD,

b TED, c NPDOD
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selected randomly, whereas for LapRDD and NPDOD, the

points are selected by the algorithm itself. It would

be important to note that the SVM classifier is used in

random sampling, LapRDD and NPDOD algorithm for

classification.

There are three parameters in our algorithm. The num-

ber of nearest neighbors (p) is set to be 10 while the

parameters k1 and k2 are empirically set to be 1e-5 and

1e-3, respectively. Linear kernel is used in proposed

method and SVM classifier.

The natural data sets [27, 28] used here are taken from

logged field tests conducted by DARPA evaluators. Over-

all, three scenarios are considered. Each scenario is asso-

ciated with two distinct image sequences, each representing

a different lighting condition. There are thus six data sets

total. Representative images are shown in Fig. 2. Each data

set consists of a 100-frame, hand-labeled image sequence.

Each image was manually labeled, with each pixel

being placed into one of three classes: OBSTACLE,

GROUNDPLANE, or UNKNOWN. The data sets, hand

labelings, and a tool to aid in labeling are all available on

the Internet [29].

In experiments, feature extraction method is fixed as

color histogram [30]. To create a color histogram, color

intensities in each of the three color channels (R, G, and B)

in the neighborhood of the reference pixel are binned. The

number of bins b (here, fixed at five) and the window

dimension cw 9 ch (fixed at 16 9 16) are parameters of the

color histogram feature extraction techniques. Using three

color channels and five bins per channel results in a feature

image with feature depth d of 15 values (three chan-

nels 9 five bins per channel).

5.3 Experimental results

We use the data sets DS1A, DS2A, and DS3A in this

experiment. For each data set, 20 images are extracted. We

extract 40 points from each image and the number of

OBSTACLE and GROUNDPLANE is the same. The

points of UNKNOWN are all ignored. So, there are 800

samples for each data set. We then apply each active

learning algorithm to select k = (10, 20,…,100) samples

for labeling. The labeled samples are used as training

samples while the rest unlabeled samples are used as

testing samples.

The classification accuracy is shown in Fig. 3. Our

NPDOD algorithm outperforms both Random and NPR

algorithm in most case in the three datasets. Especially in

DS1A and DS2A, the classification accuracy obtained by

using 60 samples selected by proposed NPDOD algorithms

is comparable to those by using 100 samples selected by

Random and NPR algorithms. Compared with LapRDD,

NPDOD achieves a better result in DS1A and DS3A. Only

in DS2A, LapRDD gets a little higher accuracy than

NPDOD. LapRDD is comparable to NPDOD since it is

also based on optimal experimental design and combines

graph Laplacian regularized regression. However, pro-

posed algorithm NPDOD performs best as a whole.

(a) (b) (c)

(d) (e) (f)

Fig. 2 Representative images from each of the six data sets. a Data set 1A (DS1A), b Data set 2A (DS2A), c Data set 3A (DS3A), d Data set 1B

(DS1B), e Data set 2B (DS2B), f Data set 3B (DS3B)
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In order to prove that the proposed algorithm is robust to

the parameters’ values, we perform experiments with dif-

ferent values of k1 and k2 on DS2A .

Figure 4 shows how the performance of NPDOD varies

with parameters k1 and k2. As we can see in Fig. 4, pro-

posed algorithm performance is not sensitive to parameters

values. So it is a robust method which can achieve a stable

and encouraging result.

6 Conclusion

In this paper, we have introduced a novel active learning

algorithm called NPDOD. Our algorithm is motivated from

neighborhood preserving regression and OED. For each

sample, it may be represented as a linear combination of its

p nearest neighbors, a natural assumption is that the label

of this sample can also be computed as a linear combina-

tion of the labels of its p nearest neighbors. We select the

most representative samples such that the global recon-

struction error is minimized. Experimental results on ter-

rain classification show the effectiveness of proposed

approach.

Central to the proposed algorithm is neighborhood pre-

serving based on the locally linear reconstruction. The

reconstruction coefficients are computed by the idea of

LLE [24]. But the disadvantage is that the p nearest
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Fig. 4 Classification results on the data set of DS2A with different

parameters

Fig. 3 Classification results on the data set of DS1A, DS2A, and

DS3A. The samples selected by the active learning algorithm are used

as training data and the unselected samples are used as testing data.

a The classification accuracy on DS1A, b The classification accuracy

on DS2A, c The classification accuracy on DS3A

b
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neighbor search is computationally expensive. In this work,

we adopt D-optimal criterion to minimize the determinant

of covariance matrix. However, it remains unclear how

other criteria work under this framework. Moreover, the

parameter selection is an interesting problem to research

which is especially important and difficult for active

learning.
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