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Abstract How to define the sparse affinity weight

matrices is still an open problem in existing manifold

learning algorithm. In this paper, we propose a novel

supervised learning method called local sparse represen-

tation projections (LSRP) for linear dimensionality reduc-

tion. Differing from sparsity preserving projections (SPP)

and the recent manifold learning methods such as locality

preserving projections (LPP), LSRP introduces the local

sparse representation information into the objective func-

tion. Although there are no labels used in the local sparse

representation, it still can provide better measure coeffi-

cients and significant discriminant abilities. By combining

the local interclass neighborhood relationships and sparse

representation information, LSRP aims to preserve the

local sparse reconstructive relationships of the data and

simultaneously maximize the interclass separability.

Comprehensive comparison and extensive experiments

show that LSRP achieves higher recognition rates than

principle component analysis, linear discriminant analysis

and the state-of-the-art techniques such as LPP, SPP and

maximum variance projections.

Keywords Sparse representation � Manifold learning �
Dimensionality reduction � Feature extraction

1 Introduction

Low-dimensional representation of high-dimensional data

is an important problem in many application fields. The

goal of dimensionality reduction is to discover the intrinsic

structure from the raw data. There are many classical

approaches for dimensionality reduction such as principle

component analysis (PCA) [1–5], linear discriminant

analysis (LDA) [3–5] and their kernelized variations [6, 7].

These kinds of techniques measure the Euclidean distance

between the data points and obtain the global representa-

tion with the assumption of Gaussian distribution in the

data space. These approaches are often based upon the

assumption that the training data are drawn from the same

underlying distribution as the test data. Unfortunately, due

to the limitations in data collection and the high complexity

of the data, it is usually difficult to guarantee that the

training data have the desired characteristics in a statisti-

cally sufficient way. This issue becomes more prominent in

high-dimensional small sample size problems.

Principle component analysis is an unsupervised method

which preserves the maximal scatter of the data set. LDA is a

supervised method which searches for a discriminative

subspace such that patterns belonging to the same class are as

close as possible while patterns belonging to different classes

are as far away as possible. Because of using class infor-

mation, LDA-based algorithms often perform better than

PCA-based algorithms. However, both PCA and LDA take
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the global Euclidean structure into account instead of the

local geometry structure of original data. Recently, more and

more nonlinear techniques based on manifold learning have

been proposed to learn the local geometry structure. The

representative spectral methods are Isomap [8], locally linear

embedding (LLE) [9], local tangent space alignment [10],

Laplacian Eigenmap [11], etc. These kinds of nonlinear

methods aim to preserve local structures in small neighbor-

hoods and successfully derive the intrinsic feature of

nonlinear manifolds. However, they are implemented

restrictedly on the training sets and cannot give explicit maps

on new test data points for recognition problems. Since these

nonlinear methods are only defined on the training data

space, we have to use the out-of-sample extension [12]

technique to deal with the test data in practical applications.

In order to address the out-of-sample problem, He et al. [13]

proposed a linear method named locality preserving pro-

jections (LPP) to approximate the eigenfunctions of the

Laplace–Beltrami operator on the manifold, and thus, the

new samples can be explicitly mapped to the learned sub-

space. By integrating the local neighborhood information

and class label information, many methods [14–18] and

some 2D/kernel variants were proposed and can achieve

good performance. In fact, these supervised manifold

learning methods use the same graph embedding framework,

that is, unnormalized graph Laplacian [19], for feature

extraction. However, how to define the sparse affinity weight

matrices is still an open problem.

A new hot issue of the state-of-the-art technique for

classification is sparse representation developed in recent

years. In [20, 21], the discriminative nature of sparse rep-

resentation was exploited to perform classification. This

representation for a fixed sample is naturally sparse,

involving only a small fraction of the training samples from

the same class of the sample [21]. Therefore, although

sparse representation is an unsupervised learning method, it

implicitly includes the discriminative nature. Thus, we can

take advantage of this property and put the sparse repre-

sentation into the open problem of how to define the affine

weighted matrix in most existing manifold learning meth-

ods. Based on this idea, Qiao et al. [22] extended neigh-

borhood preserving embedding (NPE) [23] and proposed

sparsity preserving projection (SPP) to avoid selecting the

neighborhood parameters. However, there are two main

drawbacks in SPP. On the one hand, when a training

sample is sparsely represented by the remained training set,

the sparse representation progresses are time-consuming,

particularly when there are a large number of high-

dimensional training samples. On the other hand, since SPP

only focuses on unsupervised learning, neglecting the label

information will degrade the performances.

Motivated by the sparse representation and manifold

learning, we propose a novel method called local sparse

representation projections (LSRP) for linear dimensionality

reduction. Differing from the recent manifold learning

methods such as LPP and SPP, LSRP introduces the locally

sparse representation information into the objective func-

tion instead of globally sparse representation in SPP. The

idea of the proposed method is that the sparse weighted

matrix is constructed from local sparse representation

coefficients instead of other forms such as binary pattern or

Gaussian kernel. By integrating the local interclass rela-

tionship and sparse representation information, the pro-

posed method aims to preserve the sparse reconstructive

relationship of the data and simultaneously maximize the

interclass separability. In the literature, besides NPE, LPP

and SPP, a supervised method named maximum variance

projections (MVP) [17] is the most closest to the proposed

method. The different points are that MVP uses L2-norm to

reconstruct within-class samples and locality is not intro-

duced in between-class seperability.

The rest of the paper is organized as follows. In Sect. 2,

LPP and SPP are briefly reviewed. LSRP algorithm is

proposed in Sect. 3. In Sect. 4, experiments are carried out

to evaluate the proposed LSRP algorithm. Finally, the

conclusions are given in Sect. 5.

2 A brief review of LPP and SPP

2.1 Locality preserving projections

Let matrix X ¼ ½x1; x2; . . .; xN � be the data matrix including

all the training samples fxigN
i¼1 2 Rm in its columns. In

practice, the feature dimension m is often very high. The

goal of linear dimensionality reduction is to transform the

data from the original high-dimensional space to a low-

dimension one, that is, y ¼ AT x 2 Rd for any x 2 Rm with

d \\ m, where A ¼ ða1; a2; . . .; adÞ and aiði ¼ 1; . . .; dÞ is

an m-dimension column vector.

Locality preserving projections aims to preserve the

local geometric structure of the data set. The objective

function of LPP is defined as follows:

Min
1

2

X

i

X

j

Wij yi � yj

�� ��2 ¼ Min trðAT XðD�WÞXT AÞ

ð1Þ

where trð�Þ denotes the trace of a matrix and

yi ¼ AT xiði ¼ 1; . . .;NÞ, Dii ¼
P

j Wij and the affinity

weight matrix W is defined as

Wij ¼ expð� xi � xj

�� ��2
=tÞ; if xi 2 NKðxjÞ or xj 2 NKðxiÞ

0; otherwise

�

ð2Þ

where NKðxiÞ denotes the K nearest neighbors of xi.
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Minimizing Eq. (1) means that if two points are close to

each other in the original space, then they should be kept

close in the low-dimensional transformed space. By

imposing a constraint AT XDXT A ¼ 1, the optimal projec-

tions of LPP are given by the minimum eigenvalue solution

to the following generalized eigenvalue problem:

XðD�WÞXTa ¼ kXDXTa ð3Þ

where a is a column vector of A. Thus, the optimal trans-

formation matrix ALPP is composed by the eigenvectors

corresponding to the minimum eigenvalue solutions of Eq.

(3). It is obvious that LPP is effective in discovering the

local geometric structure of the underlying manifold.

2.2 Sparsity preserving projections

SPP first seeks a sparse reconstructive weight vector si for

each xi through the following l1 minimization problem:

Min sik k1

s:t:xi ¼ Xsi

1 ¼ eTsi

ð4Þ

where si ¼ ½si;1; . . .; si;i�1; 0; si;iþ1; . . .; si;N �T is an

N-dimensional vector in which the ith element is equal to

zero (implying that the xi is removed from X), and the

elements si;jðj 6¼ iÞ denote the contribution of each xj to

reconstruct xi; e is a N-dimensional vector of all ones. The

optimization problem of Eq. (4) can be solved by using

l1-magic [24]. Then, the optimal solution, denoted as :~si:, is

used to construct the following objective function which

aims to preserve the optimal weight vector ~si.

Min
XN

i¼1

aT xi � aT X~si

�� ��2 ¼ MinaT XðI � S� ST

þ ST SÞXTa ð5Þ

where S ¼ ½~s1;~s2; . . .;~sN �. The optimal projections, called

SPPs, are the eigenvectors of the following generalized

eigenvalue problem:

XðI � S� ST þ ST SÞXTa ¼ kXXTa ð6Þ

An advantage of SPP is that the affinity weight matrix of

the data set can be automatically given by sparse

representation. However, when a training sample is

sparsely represented by the whole training set (excluded

the training sample itself) with polynomial time by

standard linear programming methods [25], the sparse

representation procedures are time-consuming, particularly

when there are a large number of high-dimensional training

samples. Note that, in order to obtain the sparse solution in

Eq. (4), the sparse representation should be operated on a

lower PCA subspace because the number of samples N is

usually less than feature dimension m.

Since all the samples except for the represented points

itself are use for sparse representation, we call them as

global sparse representation in this paper. In the following

Sect. 3.1, local sparse representation is proposed to accel-

erate the computational speed in the procedures of sparse

representation.

3 Local sparse representation projections

In LLE [9] algorithm, each data point is represented by

its neighbors in least square error sense, where sparse-

ness is not imposed in the reconstruction coefficients.

Traditional sparse representation [20–22] is to sparsely

represent samples by the whole training set. With the

inspirations of LLE and traditional sparse representation,

local sparse representation is introduced in the proposed

algorithm.

3.1 Local sparse representation

Assume that samples belonging to the same class are

resided on a sub-manifold and samples in different classes

are distributed on different sub-manifolds. Therefore, each

training sample can be sparsely represented with its K

nearest neighbors instead of the whole remained training

data set without the represented sample itself. Thus, com-

putational speed of the local sparse representation will be

faster than that of the global sparse representation since the

number of the nearest samples is much less than the

number of the whole training data set, that is, K \\ N.

Local sparse representation is to use the following objec-

tive function to obtain the optimal local sparse represen-

tation coefficients:

Min ŝik k1

s:t:xi ¼ X̂iŝi

ŝik k2¼ 1

ð7Þ

where X̂i only includes the local K nearest neighbors of xi.

Denote the optimal local sparse representation coefficients,

that is, the optimal solution of (7), as K-dimensional vector

s�i ¼ ½s�ii1 ; . . .; s�iiK
�, where s�iip denotes the contribution of the

pth nearest neighbor xiip of xi to construct xi and {i1,…, iK}

denotes the index set of K nearest neighbors of xi. Let

�si ¼ ½�si1;�si2; . . .;�siN �T be an N-dimensional vector and the

elements in it are defined as

�sij ¼
s�ij; if j 2 fi1; . . .; iKg
0; otherwise

�
:

Following the same way as SPP, we aim to minimize the

following local sparse reconstruction error:
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JsðAÞ ¼
XN

i¼1

aT xi � aTX�si

�� ��2

2

¼ aT XðI � �S� �ST þ �ST�SÞXTa ð8Þ

where �S ¼ ½�s1;�s2; . . .;�sN � is the local sparse representation

matrix.

It is clear that only local nearest neighbors of a data point

are attended in the sparse representation in Eq. (7) in our

proposed method. However, in SPP, all the remained

training data except the represented data point itself are

used for sparse representation. This is the difference

between our method and the approach used in SPP. Thus,

the nonzero coefficients in our proposed method are strictly

located on local nearest neighbors of the represented points.

Since most of the nonzero coefficients in �si are associ-

ated with the same class of the represented samples, we

take advantage of this property and use I � �S� �ST þ �ST�S

to characterize the local affinity weight matrix in our

algorithm. Obviously, minimizing JsðAÞ, that is, minimiz-

ing the local sparse reconstruction error, will preserve the

local sparse representation relationship of the data.

Note that, similar to SPP, in the step of local sparse

representation, the samples should be projected into a

lower PCA subspace since the dimension m of the samples

must be smaller than K in order to obtain the sparse solu-

tion in Eq. (7). When K = N - 1, local sparse represen-

tation becomes global/traditional sparse representation in

SPP. Thus, SPP is a special case of LSRP.

3.2 Characterization of the local interclass separability

Focusing on manifold learning and pattern classification,

our proposed method is expected to achieve good dis-

criminating performance by integrating the neighborhood

information and class relations among data points. Since

there are many sub-manifolds in the high-dimensional

space, in order to distinguish one sub-manifold from the

others, labels are directly used to construct an interclass

similarity matrix H. Here H is defined as follows:

Hij ¼
1; if xi 2 N�K ðxjÞ or xj 2 N�K ðxiÞ
0; otherwise

�
: ð9Þ

where N�K ðxiÞ indicates the K nearest neighbors of the

sample xi but with different labels. Suppose that we get

the low-dimensional training samples y1, y2,…, yN, then

the local between-class separability can be defined as the

following equation:

JbðAÞ ¼
1

2

X

i

X

j

Hij yi � yj

�� ��2

¼ 1

2

X

i

X

j

Hij aT xi � aT xj

�� ��2

¼ aT Xð�D � HÞXTa ¼ aT XLXTa ð10Þ

where L is Laplacian matrix, L ¼ �D� H, �Dii ¼
P

j Hij.

XLXT characterizes the separability of the data set in

different classes, that is, in different sub-manifolds. Max-

imizing Jb(A) means that samples in different classes are

separated as far as possible, which is similar to LDA

maximizing the between-class scatter.

3.3 The novel objective function

The goal of our proposed algorithm is to separate different

sub-manifolds as far as possible and preserve the local

sparse representation relationship of the data set. From Eqs.

(8) and (10), a novel objective functions are given as

follows:

Maximize JbðAÞ ¼ aT XLXTa ð11Þ

Subject to JsðAÞ ¼ aT XðI � �S� �ST þ �ST�SÞXTa ¼ 1 ð12Þ

This constrained optimization problem can be figured

out by enforcing Lagrange multiplier. Then, the optimal

projections are given by the maximum eigenvalue solution

to the following generalized eigenvalue problem:

XLXTa ¼ XðI � �S� �ST þ �ST�SÞXTa ð13Þ

From Eq. (13), it can be found that the optimal

projection matrix ALSRP = (a1, a2,…, ad) is composed of

the eigenvectors associated with the d largest eigenvalues

by solving the generalized eigenequation of Eq. (13). The

optimal projection ALSRP = (a1, a2,…, ad) is called LSRP.

For further understanding the constrained optimization

problem, Eqs. (11) and (12) can be equivalently rewritten

as maximizing the following function:

JðaÞ ¼ aT XLXTa

aT XðI � �S� �ST þ �ST�SÞXTa
ð14Þ

It is known that the criterion of LDA is to maximize the

ratio of the between-class scatter to the within-class scatter.

From the Eq. (11), we find that, similar to LDA, the

criterion of LSRP is to maximize the ratio of local

between-class separability to sparse representation errors.

The criterion J(a) indicates that we can find the projections/

maps by simultaneously maximizing the local between-

class separability and minimizing sparse representation

errors. Since most of the nonzero coefficients are

associated with the same class of the represented sample,

in the supervised learning point of view, minimizing XðI �
�S� �ST þ �ST�SÞXT implicitly characterizes the local within-

class compactness, and I � �S� �ST þ �ST�S can be viewed as

within-class affinity weight matrix which is different from

the ones existing in current manifold learning algorithm.

Therefore, our method implicates the idea of LDA. This is

also the primary motivation of our proposed method.
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3.4 The algorithm

The LSRP algorithmic procedures can be summarized as

follows:

Step 1 Project the original data into the PCA subspace to

overcome the small sample size problem and constructs

matrix H with Eq. (9)

Step 2 Compute the optimal sparse reconstruction coef-

ficients on a lower PCA subspace and construct local

sparse representation matrix �S.

Step 3 Compute the matrices XLXT and

XðI � �S� �ST þ �ST�SÞXT .

Step 4 Compute the optimized solutions by solving the

generalized eigenvalue problem based on Eq. (13).

Step 5 Project samples to the LSRP subspace and adopt a

suitable classifier for classification.

It should be noted that the matrix XðI � �S� �ST þ
�ST�SÞXT might be singular, which stems from the small

sample size problem. In order to overcome the singularity

of XðI � �S� �ST þ �ST�SÞXT , we first project the data set to a

PCA subspace so that the resulting matrix XðI � �S� �ST þ
�ST�SÞXT is nonsingular. Another consideration of using

PCA as preprocessing is for noise reduction. Moreover, to

perform sparse representation on a lower PCA subspace

can also significantly save computational time, particularly

when there are a lot of high-dimensional training samples.

The preprocessing must be performed when encountering

the case mentioned above. Therefore, the final transfor-

mation matrix A can be expressed as follows:

A ¼ APCAALSRP ð15Þ

where APCA denotes the PCA transform.

4 Experiments

To evaluate the proposed LSRP algorithm, we compare it

with PCA (Eigenface), LDA (Fisherface), LPP (Lapla-

cianface), SPP [22] and MVP [17] in ORL, Yale and

extended Yale-B face databases. The ORL database is used

to evaluate the performance of LSRP under conditions

where the pose, face expression and sample size vary. The

Yale database was used to examine the performance when

both facial expressions and illumination were varied. The

Yale-B face database was employed to test the perfor-

mance under conditions where there were large variations

in facial expressions and lighting conditions. Nearest

neighbor classifier with Euclidean distance is used in all the

experiments. The experiments are completed in Matlab 7.0

on a platform of Pentium 4 3.20 GHz CPU and 1.5G

memory.

4.1 Experiments on ORL face database

The ORL face database (http://www.uk.research.tt.com/

facedatabase.html) is used to evaluate the performance of

LSRP under conditions where the pose, face expression

and sample size vary. The ORL face database contains

images from 40 individuals, each providing 10 different

images. The facial expressions and facial details (glasses or

no glasses) also vary. The images were taken with a tol-

erance for some tilting and rotation of the face of up to 20

degrees. Moreover, there is also some variation in the scale

of up to about 10 %. All images are normalized to a res-

olution of 56 9 46. Sample images of one person are

shown in Fig. 1.

In the experiment, T images (T varies from 2 to 5) are

randomly selected from the image gallery of each indi-

vidual to form the training sample set. The remaining 10 T

images are used for test. For each T, experiments were

repeated 50 times. PCA, LDA, LPP, SPP, MVP and LSRP

are, respectively, used for feature extraction. Note that

LDA, LPP and LSRP all involve a PCA phase. For fair

comparisons, in the PCA phase of LDA, LPP, SPP and

LSRP, the number of principle components is set as 50.

The neighbor parameter K in the locality-based methods is

varied from 3 to N - 1 with step 3 to search for the best

performance, where N is the number of training samples.

The maximal average recognition rates of each method and

the corresponding dimension are given in Table 1. From

Table 1, it can be found that LSRP obtains the higher

recognition rates in all cases.

Table 1 also shows that compared with PCA and LDA

which attempt to preserve the global Euclidean structure,

locality-based method such as LPP and LSRP can achieve

higher recognition rates. LSRP is superior to SPP and MVP

since LSRP directly characterizes local interclass seper-

ability and sparse representation relationships of the local

nearest neighbors. SPP is not superior to LDA when there

are only 2 and 3 training samples per person. But, when

there are more training samples, SPP are superior to PCA,

LDA and LPP.

Focusing on the supervised manifold learning algorithm

MVP and LSRP, we find that both of them characterize the

interclass seperability and reconstruction relationships by

using within-class sample points. Within-class samples

with L2-norm reconstruction are used in MVP for repre-

sentation. However, local nearest samples with L1-norm

minimization are used in LSRP for representation, which is

significantly different from MVP. Different representations

result in different recognition rates. The facts that the

recognition rates obtained by LSRP are higher than the

Neural Comput & Applic (2013) 23:2231–2239 2235
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ones of MVP indicate that LSRP has more discriminant

abilities, which are derived from local sparse representation

relationships of the data, obviously.

It is known that face images lie on a low-dimensional

manifold embedded in the high-dimensional space. Due to

the lack of training samples, the face images may have the

property of multi-manifold structure [26–31], and thus, the

images within the local neighborhood may have different

labels. The local sparse representation can further explore

the samples having the same labels with the represented

images for representation, that is, the nonzero elements are

given to the samples with the same label as the represented

samples, which also provide helpful discriminative infor-

mation. Therefore, preserving the reconstruction coeffi-

cients can further enhance the discriminative power. Thus,

LSRP achieves best result.

4.2 Experiments on Yale database

The Yale face database (http://www.cvc.yale.edu/projects/

yalefaces/yalefaces.html) contains 165 images of 15 indi-

viduals under various facial expressions and lighting con-

ditions. For each individual, there are 11 images. In our

experiments, each image was manually cropped and re-

sized to 100 9 80 pixels. For computational effectiveness,

we down sample it to 50 9 40 in experiments. Sample

images of one person are shown in Fig. 2.

In experiments, T images (T varies from 2 to 5) were

randomly selected from the image gallery of each indi-

vidual to form the training sample set. The remaining 11

T images were used for test. For each T, experiments were

repeated 50 times. PCA, LDA, LPP, SPP, MVP and LSRP

were used for feature extraction. For fair comparisons, in

the PCA phase of LDA, LPP, SPP, MVP and LSRP, the

number of principle components are set as 30 (when there

are two images per person for training) and 40 (when there

are more than two images per person for training). Other

parameters were set as in Sect. 4.1. The maximal average

recognition rate of each method and the corresponding

dimension are given in Table 2.

As it is shown in Table 2, the top recognition rate of

LSRP is significantly higher than the other methods.

Again, SPP is not superior to LDA when there are only 2,

3 and 4 training samples per person. The results are

similar to the ones on ORL database. Moreover, as it is

show in Table 2, SPP is not necessarily superior to LPP.

However, from Tables 1 and 2, it can be found that when

there are more training samples, SPP are superior to LDA

and LPP.

When we focus on the recognition rates of MVP and

LSRP, we can find that the recognition rates of LSRP are

higher than the ones of MVP. This indicates that local

sparse representation relationships of the data can provide

more discriminative information than linear reconstruction

with L2-norm.

4.3 Experiments on the extended Yale-B face database

The Yale Face Database B contains 5,760 single-light-

source images of 10 subjects, each under 576 viewing

conditions (9 poses and 64 illumination conditions). The

extended Yale Face Database B contains 16,128 images of

28 human subjects with the same condition and data format

as in the previous database. We combine these two data-

bases to include 38 subjects in total. Thus, the database

contains 2,414 front-view images of 38 individuals. The

images are cropped and resized to 32 9 32 pixels, with 256

gray levels per pixel. The database can be directly down-

loaded form http://www.cs.uiuc.edu/homes/dengcai. The

feature of each image is represented by a 1,024-dimen-

sional column vector. Large illumination variation is the

property in Yale-B databases. Sample images of one person

on the Yale-B face database are shown in Fig. 3.

In this experiment, T (T = 5:5:30) images are randomly

selected from the image gallery of each individual to form

the training sample set. The remaining images are used for

Fig. 1 Sample images of one person on the ORL face database

Table 1 The maximal average recognition rates (percent) of six

methods on the ORL database and the corresponding dimensions

(shown in parentheses) when the 2, 3, 4 and 5 samples per class are

randomly selected for training and the remaining for test

#/class 2 3 4 5

PCA 74.91 (50) 82.23 (46) 84.53 (34) 86.71 (46)

LDA 77.40 (39) 85.09 (39) 86.17 (39) 87.23 (35)

LPP 72.05 (48) 81.78 (46) 87.42 (36) 90.82 (34)

SPP 73.04 (50) 82.69 (50) 88.04 (50) 91.53 (50)

MVP 76.93 (44) 84.70 (43) 88.38 (40) 91.48 (37)

LSRP 80.48 (50) 88.46 (50) 92.94 (50) 95.34 (50)
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test. For each T, the experiments were repeated 10 times.

For fair comparisons, in the PCA phase of LDA, LPP,

MVP and LSRP, the number of principle components is set

as 150, and the remained parameters are set as in Sect. 4.1.

The maximal average recognition rate of each method and

the corresponding dimension are given in Table 3. As

shown in Table 3, the top recognition rate of LSRP is

significantly higher than the other methods. Both LSRP and

SPP aim to preserve the sparse representation relationships.

However, LSRP directly characterize local inter-class

seperability and local sparse representation. Thus, LSRP is

superior to SPP and MVP.

Experiments on ORL and Yale face database show that

SPP might not be superior to LDA and LPP when there are

only small numbers of training samples such as T = 2:4.

However, when there are more training samples such as

T [ 4 in all experiments presented above, the recognition

rates of SPP are significantly higher than LDA and LPP,

which are consistent with [22]. Moreover, once again,

when we compare the recognition rates of MVP and LSRP,

we can draw the same conclusion that local sparse repre-

sentation provides significant discriminant information.

Moreover, in order to show the high efficiency of the

proposed local sparse representation, we compare the

computational time in 50 dimensional PCA subspace when

30 samples of each class are used for training. l1-magic

[24] with the same parameters are used in SPP and LSRP to

obtain the sparse representation coefficients. For each

sample, local sparse representation with K = 100 in LSRP

only takes 0.187 s. However, global sparse representation

in SPP costs 2.469 s in sparse representation for each

sample. This indicates that SPP are more time-consuming

than LSRP. The reason is that the computational com-

plexity of sparse representation is polynomial time, that is,

at least O(n3) where n denotes the number of the training

samples used in sparse representation. Since K � N, LSRP

is more efficient than SPP which uses N - 1 training

Fig. 2 Sample images of one person on the Yale database

Table 2 The maximal average recognition rates (percent) of six

methods on the Yale database and the corresponding dimensions

when 2, 3, 4 and 5 samples per class are randomly selected for

training and the remaining for test

#/class 2 3 4 5

PCA 78.49 (29) 81.47 (40) 85.26 (37) 85.96 (40)

LDA 81.93 (14) 85.61 (14) 88.30 (14) 88.84 (14)

LPP 81.45 (22) 85.97 (24) 88.57 (21) 89.00 (18)

SPP 66.98 (29) 80.48 (40) 85.09 (39) 90.51 (39)

MVP 84.59 (24) 88.70 (28) 90.74 (28) 92.71 (23)

LSRP 87.97 (28) 90.15 (39) 92.69 (39) 94.31 (39)

Fig. 3 Sample images of one person on the Yale-B face database
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samples for sparse representation. Thus, introducing the

locality into the sparse representation is helpful for

improving the efficiency.

5 Conclusion

In this paper, we develop a supervised learning technique

called LSRP for linear dimensionality reduction of high-

dimensional data. But, differing from the recent manifold

learning methods such as LPP, SPP and MVP, LSRP

introduces the local sparse representation information into

the objective function. By combining the local interclass

neighborhood relationship and local sparse representation

information, LSRP aims to preserve the sparse recon-

structive relationship of the data and simultaneously max-

imize the interclass separability. Although no label

information is given in constructing affinity matrix

I � �S� �ST þ �ST�S, the sparse representation can provide

better measure coefficients which are different from the

current manifold learning algorithm. Moreover, comparing

with global sparse representation, local sparse representa-

tion greatly saves computational time. Our experiments

also show that local sparse representation without label

information provides more significant discriminant abilities

than L2-norm representation with label information used in

MVP. Therefore, the recognition rates of LSRP are higher

than that of LDA, LPP, SPP and MVP. The experimental

results on ORL, Yale and extended Yale-B face databases

show the effectiveness and efficiency of LSRP.

Acknowledgments This work is partially supported by the Natural

Science Foundation of China under grant No. 61203376, 61203243,

61005005, 61005008, 61105054, Hi-Tech Research and Development

Program of China under grant No. 2006AA01Z119 and China Post-

doctoral Science Foundation funded project 2012M511479.

References

1. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition:

a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

2. Joliffe I (1986) Principal component analysis. Springer, New

York

3. Fukunnaga K (1991) Introduction to statistical pattern recogni-

tion, 2nd edn. Academic Press, London

4. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans

Pattern Anal Mach Intell 23(2):228–233

5. Belhumeour PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces

vs. fisherfaces: recognition using class specific linear projection.

IEEE Trans Pattern Anal Mach Intell 19(7):711–720

6. Scholkopf B, Smola A, Muller KR (1998) Nonlinear component

analysis as a Kernel eigenvalue problem. Neural Comput

10(5):1299–1319

7. Yang J, Frangi AF, Zhang D, Yang J-Y, Zhong J (2005) KPCA

plus LDA: a complete Kernel fisher discriminant framework for

feature extraction and recognition. IEEE Trans Pattern Anal

Mach Intell 27(2):230–244

8. Tenenbaum JB, deSilva V, Langford JC (2000) A global geo-

metric framework for nonlinear dimensionality reduction. Sci-

ence 290:2319–2323

9. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction

by locally linear embedding. Science 290:2323–2326

10. Zhang Z, Zha H (2004) Principal manifolds and nonlinear

dimensionality reduction via tangent space alignment. SIAM J

Sci Comput 26(1):313–338

11. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral

techniques for embedding and clustering. Proc Adv Neural Inf

Process Syst Vancouver Can 14:585–591

12. Bengio Y, Paiement JF, Vincent P, Delalleau O, Roux N, Ouimet

M (2003) Out-of-sample extensions for LLE, isomap, MDS,

eigenmaps, and spectral clustering. Adv Neural Inf Process Syst

16:177–184

13. He X, Niyogi P (2003) Locality preserving projections. In: Pro-

ceedings of the seventeenth annual conference on neural infor-

mation processing systems, Vancouver and Whistler, Canada

14. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant

embedding and its variants. Proc IEEE Conf Comput Vis Pattern

Recognit 2:846–853

15. Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph

embedding and extensions: a general framework for dimension-

ality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

16. Fu Y, Yan S, Huang TS (2008) Classification and feature

extraction by simplexization. IEEE Trans Inf Forensics Secur

3(1):91–100

17. Zhang T, Yang J, Wang H, Du C (2007) Maximum variance

projections for face recognition. Opt Eng 46(6):0672061–

0672068

18. Fu Y, Yan S, Huang TS (2008) Correlation metric for generalized

feature extraction. IEEE Trans Pattern Anal Mach Intell

30(12):2229–2235

19. Chung F (1997) Spectral graph theory, CBMS Regional Con-

ference Series in Mathematics, no. 92

20. Wright J, Yang A, Sastry S, Ma Y (2009) Robust face recognition

via sparse representation. IEEE Trans Pattern Anal Mach Intell

31(2):210–227

Table 3 The maximal average recognition rates (percent) of six methods on the Yale-B face database and the corresponding dimensions (shown

in parentheses) when T (T = 5:5:30) samples per class are randomly selected for training and the remaining for test

#/class 5 10 15 20 25 30

PCA 46.77 (150) 60.05 (150) 67.60 (150) 71.81 (150) 74.95 (150) 78.34 (150)

LDA 63.84 (37) 80.08 (37) 85.37 (37) 88.20 (37) 85.19 (37) 84.18 (37)

LPP 64.17 (130) 80.20 (140) 87.65 (130) 89.96 (100) 90.87 (145) 91.42 (145)

SPP 65.68 (150) 80.90 (150) 87.15 (27) 90.72 (145) 92.61 (140) 93.10 (135)

MVP 67.91 (90) 81.93 (45) 88.30 (30) 90.98 (25) 92.13 (35) 93.35 (30)

LSRP 71.69 (150) 83.64 (150) 89.64 (150) 91.61 (150) 93.03 (100) 94.51 (125)

2238 Neural Comput & Applic (2013) 23:2231–2239

123



21. Huang K, Aviyente S (2006) Sparse representation for signal

classification. Adv Neural Inf Process Syst 19:609–616

22. Lishan Q, Songcan C, Xiaoyang T (2010) Sparsity preserving

projections with applications to face recognition. Pattern Rec-

ognit 43:331–341

23. He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving

embedding. Proc Int Conf Comput Vis (ICCV) 2:1208–1213

24. Candes E., Romberg J (2005) l1-magic: recovery of sparse signals

via convex programming. http://www.acm.caltech.edu/l1magic/

25. Chen S, Donoho D, Sarnders M (2001) Atomic decomposition by

Basis pursuit. SIAM Rev 43(1):129–159

26. Yang W, Sun C, Zhang L (2011) A multi-manifold discriminant

analysis method for image feature extraction. Pattern Recognit

44(8):1649–1657

27. Zhao C, Liu C, Lai Z (2011) Multi-scale gist feature manifold for

building recognition. Neurocomputing 74(17):2929–2940

28. Zhao H, Sun S, Jing Z, Yang J (2006) Local structure based

supervised feature extraction. Pattern Recognit 39(8):1546–1550

29. Zhao H, Wong W (2012) Supervised optimal locality preserving

projection. Pattern Recognit 45(1):1546–1550

30. Xu Y, Zhong A, Yang J, Zhang D (2010) LPP solution schemes

for use with face recognition. Pattern Recognit 43(12):4165–4176

31. Lai Z, Wan M, Jin Z (2011) Locality preserving embedding for

face and handwriting digital recognition. Neural Comput Appl

20(4):565–573

Neural Comput & Applic (2013) 23:2231–2239 2239

123

http://www.acm.caltech.edu/l1magic/

	Local sparse representation projections for face recognition
	Abstract
	Introduction
	A brief review of LPP and SPP
	Locality preserving projections
	Sparsity preserving projections

	Local sparse representation projections
	Local sparse representation
	Characterization of the local interclass separability
	The novel objective function
	The algorithm

	Experiments
	Experiments on ORL face database
	Experiments on Yale database
	Experiments on the extended Yale-B face database

	Conclusion
	Acknowledgments
	References


