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Abstract: Non-negative matrix factorisation (NMF) has been widely used in pattern recognition problems. For the tasks of
classification, however, most of the existing variants of NMF ignore both the discriminative information and the local
geometry of data into the factorisation. The actual conditions of the problems will be affected by the change of the
environmental factors to affect the recognition accuracy. In order to overcome these drawbacks, the authors regularised NMF
by intra-class and inter-class fuzzy K nearest neighbour graphs, leading to NMF-FK-NN in this study. By introducing two
novel fuzzy K nearest neighbour graphs, NMF-FK-NN can contract the intra-class neighbourhoods and expand the inter-class
neighbourhoods in the decomposition. This method not only exploits the discriminative information and uses the geometric
structure in the data effectively, but also reduces the influence of the external factors to improve recognition effect. In the
factorisation, the authors minimised the approximation error whilst contracting intra-class fuzzy neighbourhoods and
expanding inter-class fuzzy neighbourhoods. The authors develop simple multiplicative updates for NMF-FK-NN and present
monotonic convergence results. Experiments of the text clustering on the CLUTO toolkit and face recognition on ORL and
YALE datasets show the effectiveness of our proposed method.
1 Introduction

Non-negative matrix factorisation (NMF) is a recent method
for finding a non-negative decomposition of the original
data matrix. Given an input data matrix X, each column of
which represents a sample, NMF produces two factor
matrices U and VT using low-rank approximation such that
X ≃ UVT. Each column of U represents a base vector, and
each column of VT describes how these base vectors are
combined fractionally to form the corresponding sample in
X. All entries in matrices are required to be non-negative.
Compared to other methods, such as principal components
analysis (PCA) [1], and independent component analysis
[2], non-negativity enables a non-subtractive combination of
parts to form a whole, and make the encoding of data easier
to interpret [3]. Several varieties of NMF have been
developed by introducing additional constraints to the
original NMF. To incorporate the data geometric structure,
Cai et al. [4] proposed graph-regularised NMF (GNMF).
Since data are assumed to lie in a smooth sub-manifold
embedded in high-dimensional space. The data geometric
structure is encoded by a nearest neighbour (NN) graph,
which plays an important role in popular dimension
reduction algorithm, such as Laplacian eigenmap [5] and
local preserving projections (LPP) [6, 7]. The localisation
constraint in NMF leads to a part-based representation. Li
et al. [8] presented the local NMF (LNMF) that learns
spatially localised, part-based representation for images. By
introducing the sparseness constraints, Hoyer [9] presented
the sparse NMF (SNMF) that improves the ability of
part-based representation. Most of the existing variants of
NMF have good effect in data representation, but their
performance was not yet satisfactory in the feature
extraction since discriminative information was not used.
By introducing the Fisher’s discriminative information to
NMF, Wang et al. [10] and Zafeiriou et al. [11] proposed
fisher NMF (FNMF) and discriminant NMF, respectively.
Without regard to the geometric structure in the data, they
just only consider the label information. So their methods
are all deficient.
In order to exploit discriminative information and consider

geometric structure sufficiently in the data at the same time,
An et al. [12] presented the manifold-respecting
discriminant NMF K nearest neighbour (NMF-K-NN)
which was based on the assumption that data points on the
same structure were likely to have the same label. They
regularised NMF by intra-class and inter-class K-NN
graphs, each of which reflected intra-class neighbours and
inter-class neighbours. The main purpose of their method
was to seek a non-negative decomposition which minimised
the approximation error whereas contracting intra-class
neighbourhoods and expanding inter-class neighbourhoods
in the decomposition and they had got good performance in
the task of the pattern recognition. In fact, the pattern
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recognition problems will be affected by the change of the
environmental factors to affect the recognition accuracy,
such as illumination, expression, viewing conditions. Using
the samples which are significantly affected by numerous
environmental conditions to construct the intra-class and
inter-class K-NN graphs can lead to some uncertain impact.
How to investigate these factors and quantify their impact
on their ‘internal’ class assignment can determine the
recognition performance stand or fall [13]? Interestingly,
Keller et al. [14] proposed the algorithm of fuzzy K nearest
neighbour (FK-NN), by using the fuzzy membership, the
influence of the environmental conditions can be effectively
reduced. Recently, Wan et al. [15] proposed the fuzzy local
discriminant embedding (FLDE) algorithm, by
implementing the FK-NN in LDE [16], it could reduce the
environmental conditions effect to obtain the correct local
distribution information. This method adjusts to the ultimate
objective of using fuzzy sets to cope with the uncertainty
factors which have been inherently appeared in the pattern
recognition problems.
In this paper, considering the fact that the outlier samples in

the patterns may have some adverse influences on the
classification result, we develop a novel NMF algorithm
regularised by intra-class and inter-class FK-NN graphs,
leading to NMF-FK-NN. By introducing two novel FK-NN
graphs, NMF-FK-NN can contract the intra-class
neighbourhoods and expand the inter-class neighbourhoods
in the decomposition. This method not only exploits the
discriminative information, but also uses the geometric
structure in the data effectively. Also we develop simple
multiplicative updates for NMF-FK-NN and present
monotonic convergence results. Finally, experiments of the
text clustering on the CLUTO toolkit and face recognition
on ORL and YALE datasets are presented to demonstrate
the effectiveness of our proposed method.
The rest of the paper is organised as follows. Section 2

gives a brief introduction of NMF. Section 3 presents the
proposed NMF-FK-NN and the multiplicative updates.
Section 4 shows the experimental results on the task of text
clustering and face recognition. We conclude this paper in
Section 5. Detailed proofs of lemmas and theorems are
given in Appendix.
2 Standard NMF

Consider a data matrix X = [x1, x2, …, xn]∈Rm × n, each
column of which consists of m features, and represents a
sample such as a text document or a face image. NMF aims
to decompose X into two low rank non-negative matrices,
basis matrix U = [uij]∈ Rm × p and feature matrix V = [vij]∈
Rn × p, such that X ≃ UVT, where p <min{m, n}. So we
can view this approximation column by column as
xi ≃

∑p
j=1 ujvij, where uj is the jth column vector of U, and

can be regarded as a basis vector. So each data vector xi is
approximated by a linear combination of the columns of U,
weighted by the components of V. Therefore the objective
optimisation problem of NMF can be concluded as follows

min
U , V

:JNMF = X − UVT
∥∥ ∥∥2

Fs.t. U , V ≥ 0 (1)

Several methods have been proposed to find a solution to this
non-linear optimisation problem. The multiplicative updates
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rules were first investigated by Lee and Seung [17] as follows

(a) U � U ⊗ XV

UVTV
; (b) V � V ⊗ XTU

VUTU
(2)

where⊗ denote elementwise multiplication.

3 NMF regularised by intra-class and
inter-class NMF-FK-NN graphs

3.1 Intra-class and inter-class K-NN graphs

Suppose there are c known pattern classes ω1,…, ωc and a set
of samples with m dimension X = [x1, …, xn]∈Rm × n. Each
sample in X belongs to one of the classes ωi, that is, xj∈ ωi,
i = 1, …, C; j = 1, …, n. We denote li as the label of xi.
Recent studies on spectral graph theory and manifold

learning theory have demonstrated that the local geometric
structure can be effectively modelled through a NN graph
on a scatter of data points, so in order to exploit both the
geometrical structure of data and label information, An
et al. [12] constructed the adjacency matrix for the
intra-class K-NN graph WW by using binary weights
indicating neighbourhood relationships as

WW
ij = 1, if xi [ NW

K xj

( )
or xj [ NW

K xi
( )

0, otherwise

{
(3)

where NW
K xi
( )

denotes the set of K-NN of xi with lj = li.
Meanwhile, the adjacency matrix for the inter-class K-NN
graph WB can be constructed by using binary weights
indicating neighbourhood relationships as follows

WB
ij =

1, if xi [ NB
K xj

( )
or xj [ NB

K xi
( )

0, otherwise

{
(4)

where NB
K xi
( )

denotes the set of K-NN of xi with lj≠ li.

3.2 Intra-class and inter-class FK-NN graphs

As we all know that environmental conditions can influence
the performance of the pattern recognition problem, in order
to cope with the uncertainty factors, Keller et al. [14]
proposed FK-NN algorithm, by using fuzzy membership,
the influence of the environmental conditions can be
effectively reduced. So in order to reduce the influence of
outliers and exploit both geometrical structure of data and
label information, we introduce the fuzzy membership to
construct the intra-class compactness FK-NN graph and
inter-class separability FK-NN graph. Moreover, we
construct the adjacency matrix for the intra-class FK-NN
graph FWW as follows

FWW = DW
ij .∗WW

ij (5)

where * denotes matrix elementwise multiplication.
Moreover, the fuzzy membership matrix Δ can be
constructed through the (FK-NN) algorithm [14] as follows

DW
ij =

0.51+ 0.49 nij/K
( )

, if xi [ NW
K xj

( )
0.49 nij/K

( )
, otherwise

⎧⎨
⎩ (6)
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Moreover, the inter-class FK-NN graph FWB can be
constructed as follows

FWB = DB
ij∗WB

ij (7)

where

DB
ij =

0.51+ 0.49 nij/K
( )

, if xi [ NB
K xj

( )
0.49 nij/K

( )
, otherwise

⎧⎨
⎩

From these adjacency matrices defined, we can compute the
fuzzy Laplacian scatter matrix of the graph for the
intra-class FK-NN graphs as follows

FLW = FDW − FWW (8)

where FDW = ∑
j=i D

W
ij W

W
ij , ∀i is the fuzzy diagonal

matrix whose entries are column sums of FWW. FLW is
called fuzzy graph Laplacian, which is a discrete
approximation to the Laplace–Beltrami operator on the data
manifold. Moreover, the fuzzy Laplacian scatter matrix of
the graph for the inter-class FK-NN graphs can be
constructed in a similar way

FLB = FDB − FW B (9)

where FDB = ∑
j=i D

B
ijW

B
ij , ∀i is also the fuzzy diagonal

matrix.
3.3 NMF-FK-NN

The main purpose of constructing the FK-NN graph is to
exploit both the geometrical structure of data and label
information. Moreover, we want to shrink the local regions
of the intra-class neighbourhood and expanding the local
regions of the inter-class neighbourhood. So, we define JFG
as the measure of the smoothness of mapping function
along the geodesics in the intrinsic geometry of the data.
By minimising JFG, we can obtain a mapping function
which is sufficiently smooth on the data manifold. Let
fk(xi) = vik be a function that produce the mapping of the
original data point xi onto the axis uk. A reasonable
criterion for choosing a ‘good’ map is to minimise the
following objective function JFG, and the intuitive
explanation of minimising JFG is that if two data points xi
and xj with the same label are close, fk(xi) and fk(xj) are
similar to each other. Otherwise, if two data points with
different label are far, fk(xi) and fk(xj) are different to each
other (see (10))

Our NMF-FK-NN incorporates the JFG term and
JFG = 1

2

∑n
i, j=1

fk xi
( )− fk xj

( )∥∥∥ ∥∥∥2FWW
ij −

(

=
∑n
i=1

v2ikFD
W
ii −

∑n
i, j=1

vikv jkFW
W
ij

( )

= vTkFD
W vk − vTkFW

W vk
( )− vTkFD

(
= vTkFL

W vk − vTkFL
Bvk
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minimises the objective function

JNMF−FK−NN = JNMF + a
∑p
k=1

JFG

= X − UVT
∥∥ ∥∥2

F+atr VT FLW − FLB( )
V

[ ]
(11)

With the constraint that U and V are non-negative. tr(·)
denotes the trace of a matrix. The α≥ 0 is the regularisation
parameter.

3.4 Multiplicative update rules

The objective function JNMF-FK-NN of NMF-FK-NN in (11) is
not convex in both U and V together. Therefore it is
unrealistic to expect an algorithm to find the global
minimum of JNMF-FK-NN. In the following, we introduce an
iterative algorithm which can achieve a local minimum.
The objective function JNMF-FK-NN can be rewritten as

JNMF−FK−NN = tr XXT( )− 2tr XVUT( )+ tr UVTVUT( )
+ atr VT FLW − FLB( )

V
[ ]

(12)

Let Ψ = [ψij] and Φ = [jij] be the Lagrange multiplier for
constraint U≥ 0 and V≥ 0, respectively. So the Lagrange
function L is

L = tr XXT( )− 2tr XVUT( )+ tr UVTVUT( )
+ atr VT FLW − FLB( )

V
[ ]+ tr CUT( )+ tr FVT( )

(13)

The partial derivatives of L with respect to U and V are as
follows

∂L

∂U
= −2XV + 2UVTV +C (14)

∂L

∂V
= −2XTU + 2VUTU + 2a FLW − FLB( )

V +F (15)

Using the Karush-Kuhn-Tucker (KKT) conditions, we can
obtain the following update rules

U � U ⊗ XV

UVTV
(16)

V � V ⊗ XTU + a FDB + FWW( )
V

VUTU + a FDW + FW B
( )

V
(17)
fk xi
( )− fk xj

( )∥∥∥ ∥∥∥2FW B
ij

)

−
∑n
i=1

v2ikFD
B
ii −

∑n
i, j=1

vikv jkFW
B
ij

( )

Bvk − vTkFW
Bvk

)
(10)
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Table 1 Summary of datasets in the CLUTO toolkit

Dataset Source #Documents #Terms #Classes

reviews San Jose Mercury
(TREC)

4069 18 483 5

klb WebACE 2340 21 839 6
sports San Jose Mercury

(TREC)
8580 14 870 7

tr12 TREC 313 5799 8

www.ietdl.org
where the matrices FDB, FWB, FDW, FWW are non-negative.
When α = 0, it is easy to check that the update rules in (16)
and (17) reduce to the update rules of original NMF. When
α > 0, we have the following theorem:

Theorem 1: The objective function JNMF-FK-NN is
non-increasing under the update rules. The objective
function is invariant under these updates if and only if U
and V are at a stationary point.

Theorem 1 guarantees that the update rules of U and V in (16)
and (17) converge and the final solution will be a local
optimum. Please see the Appendix for a detailed proof.

4 Numerical experiments

We evaluated the performance of our proposed algorithm in
the task of text clustering and face recognition.
4.1 Text clustering

We applied the proposed algorithm to feature extraction for
text clustering. NMF and NMF-K-NN algorithms were also
tested on the same tasks to compare performance.
Throughout this experiment, we empirically set the
regularisation parameter α to 10, the number of NN K to 5
in the NMF-K-NN and NMF-FK-NN algorithms. Moreover,
we selected four well-known preprocessed document
databases from the CLUTO toolkit to evaluate our
algorithm. Each dataset is represented by a
term-by-document matrix of varying characteristics (see
Table 1). Two popular metrics, the accuracy and the
normalised mutual information (NMI) were used in these
experiments. The accuracy is defined as

AC =
∑n

i=1 d gi, map li
( )( )

n
(18)

where n is the total number of documents, and gi is the label
given by the document corpus. δ(x, y) is the function that
equals 1 when x = y and is 0 otherwise. map(li) is a
mapping function which maps each cluster label to an
equivalent given label. The Kuhn-Munkres algorithm [18]
Table 2 Clustering performance comparison on the CLUTO toolkit

Dataset Accuracy

NMF NMF-K-NN NMF-FK-NN

reviews 0.678 0.723 0.736
klb 0.593 0.609 0.612
sports 0.338 0.341 0.357
tr12 0.623 0.610 0.639
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is used for the best mapping. The greater the accuracy, the
better the clustering quality.
The second metric is the NMI metric. NMI is based on the

mutual information (MI) between two sets of clusters, C and
C’ which correspond to the set of estimated clusters and
the set of ground truth clusters, respectively. Denote by ci
and c′j the set of documents grouped into cluster i and the
set of documents in the ground truth cluster i, respectively.
With these definitions, MI between C and C’ is calculated as

MI C, C′( ) = ∑
ci[C, c′j[C′

p ci, c
′
j

( )
log2

p ci, c
′
j

( )
p ci
( )

p c′j
( ) (19)

MI is normalised by max(H(C ), H(C’)), which is defined by

NMI C, C′( ) = MI C, C′( )
max H (C), H(C′)

( ) (20)

where H(C ) and H(C’) denote the entropies of C and C’,
respectively. The normalised value varies between 0 and
1. The greater the NMI, the better the clustering quality.
Table 2 shows the evaluation results. Moreover, the results

were aggregated by averaging over ten independent trials. In
terms of the whole performance, our algorithm against other
algorithms has more significant improvements on CLUTO
toolkit. Therefore it can be concluded that our method can
exploit the discriminative information better and use the
geometric structure of the data effectively.

4.2 Face recognition

In this section, in order to compare the NMF-FK-NN that
using the fuzzy K neighbour graph and NMF-K-NN that
using K neighbour graph in dealing with the problems of
the pattern recognition that affected by the external factors,
we design the experiment of the face recognition. Here, we
evaluate the performance of the proposed method
comparing with four representative algorithms, which are
NMF [3], LNMF [8], FNMF [10] and NMF-K-NN [12], on
two popular face image databases including ORL and
YALE to complete the face recognition tasks.
Figs. 1a and b show example images of the ORL and

YALE databases, respectively. All face images of two
databases were aligned according to the eye position. Each
pixel of images was linearly rescaled to the grey level of
256, and each image was rearranged to a vector. Different
INDICES (2, 3, 4, 5) and (3, 4, 5, 6), of the images were
randomly selected from each individual to constitute the
training set Xtrain, and the rest images make up the test set
Xtest on the ORL and YALE databases, respectively. Xtrain
was used to learn basis for the low-dimensional space.
Moreover, Xtest was used to report the accuracy of face
recognition in the learned low-dimensional space. The
Normalised mutual information

NMF NMF-K-NN NMF-FK-NN

0.371 0.473 0.486
0.498 0.464 0.485
0.287 0.284 0.295
0.587 0.594 0.612
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Fig. 1 Face examples of one person

a ORL
b YALE database
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accuracy was calculated as the percentage of samples in the
Xtest that were correctly classified using the NN classifiers.
In order to compare these algorithms fairly, we ran these
algorithms under different parameter settings, and then the
best average result was reported. We chose the same
number of the neighbourhood K to construct the intra-class
FK-NN graph and inter-class FK-NN graph. Moreover, the
numerical value of K varied from 1 to 10. Also, because we
want to compare the best average results between
NMF-K-NN algorithm and our proposed algorithm, we
chose the regularisation parameter α and the dimensionality
of features with the same as the literature [12], that can be
set by [0.01, 0.1, 1, 10, 100] and [200, 195, 190, … ,10, 5],
respectively.
Since X can be approximated by columnwise UVT, we can

naturally project a sample xi from the original
high-dimensional space to the low-dimensional space or
equivalently y =U†xi, wherein the projection matrix U† =
(UTU) − 1UT is the pseudo-inverse of U. So, by computing
the features of the Xtest as Vtest = (U†Xtest)

T, we can obtain
the face recognition results using the NN classifier.

4.2.1 ORL database: The ORL databases contain images
from 40 individuals, each providing ten different images.
All the images were taken with the people in the frontal
position, but the times, lightings, facial expressions and
facial details (glasses or no glasses) are different from
image to image. The images were taken with a tolerance for
some tilting and rotation of the face of up to 20°.
Moreover, there is also some variation in the scale of up to
about 10%. Each image in the databases was resized into
56 × 46 pixel array and reshaped to a vector. Table 3 shows
the best recognition accuracy and corresponding dimension
for all the algorithms, and these trials were independently
conducted 50 times with different initialisations. From
Table 4 The maximal average recognition rates (percent) of five met
database and the corresponding dimensions (show in parentheses)

Training NMF LNMF

3 48.33 (70) 58.21 (60)
4 56.67 (80) 63.76 (100)
5 60.98 (75) 66.64 (110)
6 68.89 (100) 74.67 (125)

Table 3 Maximal average recognition rates (percent) of five metho
database and the corresponding dimensions (show in parentheses)

Training NMF LNMF

2 59.67 (75) 63.43 (90)
3 62.28 (80) 71.33 (105)
4 70.41 (85) 81.67 (135)
5 81.12 (110) 85.62 (175)
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Table 3, we can see that all algorithms as the number of
training samples increases, the recognition accuracy
becomes better. As can be also seen, in all cases, our
algorithm performs the best. When compared with the
NMF-K-NN algorithm, ours provides better recognition
accuracy.

4.2.2 YALE database: The YALE face database contain
165 images of 15 individuals (each person providing 11
different images) under various facial expressions (smile or
sad) and lighting conditions. Each image in the databases
was resized into 50 × 40 pixel array and reshaped to a
vector for computational effectiveness. Table 4 shows the
best recognition accuracy and corresponding dimension for
all the algorithms, and these trials were also independently
conducted 50 times with different initialisations. Also we
can conclude that NMF-FK-NN outperforms NMF-K-NN.
From Tables 3 and 4, the method of NMF-K-NN by

incorporating the label information and the geometric
structure in the data can achieve good recognition, but face
images are always affected by variations in illumination
conditions and different facial expressions. These changes
will reduce the recognition performance. Through the fuzzy
K neighbour graphs, our proposed method has lower
sensitivities to the sample variations caused by varying
illumination, expression, viewing conditions and shapes. So
the class of a new test point can be more reliably predicted
by the NN criterion, owing to the locally discriminating
nature. From Tables 3 and 4, we can also see that the
number of extracted features showing the best performance
in parentheses used by NMF-K-NN is always lower than
that of our proposed method. The reason for this can
explain that although our proposed method which using the
FK-NN graph has lower sensitivities to the sample
variations, our proposed method need more discriminative
hods with different number of training samples on the YALE face

FNMF NMF-K-NN NMF-FK-NN

57.46 (65) 59.17 (140) 63.76 (165)
62.52 (90) 64.82 (120) 67.13 (175)
64.21 (110) 68.38 (125) 74.62 (180)
67.37 (105) 77.62 (125) 80.98 (155)

ds with different number of training samples on the ORL face

FNMF NMF-K-NN NMF-FK-NN

67.48 (50) 69.68 (105) 70.42 (135)
74.14 (70) 76.28 (110) 77.83 (150)
84.16 (95) 85.41 (125) 86.87 (145)
87.51 (100) 89.37 (115) 91.83 (160)
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Fig. 2 Learned bases of the (first row) ORL and (second row) YALE datasets

a–d (column) sub-figures represent the basis vector of NMF, LNMF, NMF-K-NN and NMF-FK-NN, respectively
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information to achieve better recognition performance. The
advantage of the NMF-FK-NN is that the fuzzy neighbour
membership degree can efficiently handle the vagueness
and ambiguity of samples being degraded by poor
illumination, shape and facial expression variations. In other
words, the fuzzy neighbour membership degree helps to
pull the near neighbour samples in same class nearer and
nearer and repel the far neighbour samples of different
classes farther and farther. So our proposed method based
on the fuzzy neighbour membership degree can better
characterise the compactness and separability.
Table 5 Sparseness of algorithms on ORL and YALE
databases

Dataset NMF LNMF NMF-K-NN NMF-FK-NN

ORL 0.456 0.854 0.610 0.701
YALE 0.487 0.873 0.663 0.734
4.3 Parts-based learning

In this section, we study the sparseness ability of parts-based
representation of the proposed algorithm. We compare the
base sparseness ability with those learned by NMF, LNMF,
NMF-K-NN and NMF-FK-NN on ORL and YALE
databases. Fig. 2 present these bases for sub-space of the
same number of dimensionality 25. Moreover, Fig. 2a (first
column) shows the results using NMF on two databases.
Even if the factors’ images give an intuitive notion of a
parts-based representation, the factorisation is not really
sparse enough to represent unique parts of an average face.
In other words, the NMF allows some undesirable
overlapping of parts, especially in those areas that are
common to most of the faces in the input data. Fig. 2b
(second column) shows the results using LNMF, and the
local and independent features that is mouths, noses and
other facial parts on faces can be extracted. However, it
ignores both the discriminative information and the local
geometry. Fig. 2c (third column) and 2d (fourth column)
show the results using NMF-K-NN and NMF-FK-NN,
respectively. Although more useful features of faces are
retained compared to the LNMF, NMF-K-NN algorithm
allows more undesirable overlapping of parts than the
NMF-FK-NN. This allows us to tune the NMF-K-NN
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 346–353
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algorithm to more relevant parts to give more useful
information about the data.
In order to quantify sparseness ability of the basis images,

we also introduce the sparseness according to the Hoyer [9],
and the sparseness was defined as

sparseness (X ) =
��
n

√ − ∑
i xi
∣∣ ∣∣( )

/
������∑

x2i
√

��
n

√ − 1
(21)

where n is the dimensionality of vector X. Table 5 shows the
average sparseness of the columns in the learned basis by
NMF, LNMF, NMF-K-NN and NMF-FK-NN. It can be
seen from the results that both NMF-K-NN and
NMF-FK-NN bases are sparser than NMFs. LNMF bases
are sparser than our methods. Moreover, the NMF-FK-NN
bases are sparser than NMF-K-NNs, this can illuminate that
the NMF-FK-NN can use the discriminative information
and local geometry better.

4.4 Parameter selection

Our algorithm has two essential parameters: the number of
NN K and the regularisation parameter α. We set the
number of K of fuzzy intra-class and inter-class graph to be
the same, and study the parameter K effect on the face
recognition accuracy on the YALE database, where the
training set is comprised of three images randomly chosen
from each individual and the remainder images for test. By
definition of the fuzzy adjacent graphs, K varies from 1 to
351
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Fig. 3 Face recognition accuracy for different values of the parameters of the NMF-FK-NN

a Number of K in the neighbourhood graphs
b α with K = 5 fixed
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10. Fig. 3a presents the average performances of the accuracy
against K after running the method 50 times. Moreover, we
can conclude that the accuracy increased with the parameter
K, but when the parameter K increased, the amount of
computation increased enormously. So we had to consider
the tradeoff between computation cost and the accuracy to
choose the parameter K. The situations of choosing the
parameter K on the ORL database are the same with the
YALEs. To another parameter α, we set it equal to 0.1, 1,
10, 20, 30, 40, and experiment on ORL and YALE
databases, respectively. Also, we randomly selected four
images from each identity to form the training set and the
remainder images for test. These trails were independently
performed ten times, and the average accuracy was
reported. Fig. 3b presents the average performances of the
accuracy against α with K fixed to 5. Moreover, we can see
that when α larger than 10, the accuracy was stable gradually.

5 Conclusions

In this paper, we proposed the NMF-FK-NN algorithm that
incorporates both local geometry and discriminative
information by exploiting fuzzy inter-class and intra-class
neighbourhoods. By using the fuzzy membership, the
influence of the outliers on feature extraction can be
effectively reduced and more effective local discriminative
features can be obtained. Experimental results of the text
clustering on the CLUTO toolkit and face recognition on
ORL and YALE datasets show the effectiveness of the
proposed method. Also, multiplicative update rules were
provided with convergence analysis. In the future, we will
make more tests on other types of databases, and further
improved the discriminative ability.
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8 Appendix

Convergence analysis:

By introducing an auxiliary function, we can prove the
convergence of NMF-FK-NN.

Definition 1: The function G(v, v’) is an auxiliary function for
F(v), if the G(v, v’)≥ F(v) and G(v, v) = F(v) are satisfied.

The auxiliary function is very useful because of the following
lemma.

Lemma 1: if G(v, v’) is an auxiliary function of F(v), then F(v)
is non-increasing under the update

vt+1 = argmin
v

G v, vt
( ) (22)

Proof : F(vt + 1)≤G(vt + 1, vt)≤G(vt, vt) = F(vt).

Since the second term of JNMF-FK-NN is only related to V, the
update rule of U is exactly same as the original NMF. The
convergence proof of NMF-FK-NN that JNMF-FK-NN is
non-increasing under update rule (16) is the same as the
literature [17]. Here we give the proof that the objective
function JNMF-FK-NN is non-increasing under the update rule
(17).
Considering any element vij in V, we use Fij to denote the

part of JNMF-FK-NN which is only relevant to vij. It is easy to
check that

Fij = −2XTUVT + VUTUVT( )
ij
+atr VT FLW − FLB( )

V
[ ]

ij

F ′
ij = −2XTU + 2VUTU + 2a FLW − FLB( )

V
( )

ij
,

F ′′
ij = 2 UTU

( )
jj
+2a FLW − FLB( )

ii

where F′ij is the first-order partial derivative of JNMF-FK-NN w.
r.t vij and Fij″ is the second-order partial derivative of
JNMF-FK-NN w.r.t vij.

Lemma 2: Function

G v, vtij

( )
= Fij vtij

( )
+ F ′

ij vtij

( )
v− vtij

( )

+
VUTU
( )

ij
+a FDW + FW B( )

V
[ ]

ij

vtij
v− vtij

( )2 (23)

is an auxiliary function for Fij.
FDW + FW B( )
V

[ ]
ij
=

∑n
s=1

FDW
is + FWW

is

( )
vtsj ≥ FDW + FWB(

≥ FLW + −FDB + FWB( )[ ]
iiv

t
ij = FLW −(

vt+1
ij = vtij − vtij

F ′
ij vtij

( )
2 VUTU + a DFW +WFB

( )
V

[ ]
ij

= vtij
2 VUTU + a FDW + FW B( )

V
[ ]

ij
−2 −XTU + VUTU

[
2 VUTU + a FDW + FW B

( )
V

[ ]
ij
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Proof: Since G(v, v) = Fij(v) is obvious, we need to show that
G(v, vtij) ≥ Fij(v).
To do this, we compare the Taylor series expansion of Fij(v)

Fij(v) = Fij vtij

( )
+ F ′

ij vtij

( )
v− vtij

( )
+ 1

2
F ′′
ij vtij

( )
v− vtij

( )2

For F (n)
ij (v) = 0with n≥ 3, we could just derive the Taylor

series expansion of Fij(v) until second order. With (16) to
find that G(v, vtij) ≥ Fij(v) is equivalent to

VUTU
( )

ij
+a FDW + FW B( )

V
[ ]

ij

vtij

≥ UTU
( )

jj
+a FLW − FLB( )

ii

We have

VUTU
( )

ij=
∑q
l=1

vtil U
TU

( )
lj ≥ vtij U

TU
( )

jj

and (see equation at the bottom of the page)
We can easily demonstrate the convergence of Theorem 1.
Proof of Theorem 1: Take the derivative of G v, vtij

( )
w.r.t v

to obtain vt+1
ij as

∂G v, vtij

( )
∂v

= 0, F ′
ij vtij

( )
+ vt+1

ij − vtij

( )
2 VUTU + a DFW +WFB( )

V
[ ]

ij

vtij
= 0

Replacing G(v, vtij) in (22) by (23) results in (see equation at
the bottom of the page)

Since (23) is an auxiliary function, Fij is non-increasing
under this update rule. For Fij is the part of JNMF-FK-NN

which is only relevant to vij, vij is non-increasing under this
update rule (17).
)
ii
vtij ≥ FDW − FWW( )+ FWB[ ]

ii
vtij = FLW + FW B( )

ii
vtij

FLB)
iiv

t
ij

+ a LFW − LFB( )
V
]
ij = vtij

XTU + a FDB + FWW( )
V

[ ]
ij

VUTU + a FDW + FWB
( )

V
[ ]

ij
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