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Abstract In this paper, we propose a new multiscale saliency detection algorithm based on
image patches. To measure saliency of pixels in a given image, we segment the image into
patches by a fixed scale and then use principal component analysis to reduce the dimensions
which are noises with respect to the saliency calculation. The dissimilarities between a
patch and other patches, which indicate the patch’s saliency, are computed based on the
dissimilarity of colors and the spatial distance. Finally, we implement our algorithm through
multiple scales that further decrease the saliency of background. Our method is compared
with other saliency detection approaches on two public image datasets. Experimental results
show that our method outperforms the state-of-the-art methods on predicting human fixations
and salient object segmentation.

Keywords Saliency detection · Multiscale · Principle component analysis ·
Object segmentation · Human fixation

1 Introduction

Humans can identify salient areas in their visual fields with surprising speed and accuracy
before performing actual recognition. Computationally detecting such salient image regions
remains a significant goal, as it allows preferential allocation of computational resources in
subsequent image analysis and synthesis. There are many applications for visual attention,
for example, automatic image cropping [1], adaptive image display on small devices [2],
image/video compression, advertising design [3], and image collection browsing. Recent
studies [4,5] demonstrated that visual attention helps object recognition, tracking, and detec-
tion as well.
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Visual attention analysis has generally progressed on two fronts: bottom-up and top-down
approaches. Bottom-up approach, which is data-driven and task-independent, is a perception
processing for automatic salient region selection for images. On the other hand, top-down
approach is related to the recognition processing influenced by the prior knowledge such as
tasks to be performed, the feature distribution of the target, the context of the visual scene
and so on [6–8].

In this paper, we also focus on the bottom-up approaches. There exist several compu-
tational models for simulating human visual attention based on the bottom-up approaches.
A representative work by Itti et al., which use a Difference of Gaussians approach to evalu-
ate those features, is presented in [9]. The resulting saliency maps are generally blurry, and
often overemphasize small, purely local features, which renders this approach less useful for
applications such as segmentation and detection, etc. In frequency domain, frequency space
methods [10,11] determine saliency based on the amplitude or phase spectrum of the Fourier
transform of an image. The resulting saliency maps better preserve the high level structure of
an image than [9], but exhibit undesirable blurriness and tend to highlight object boundaries
rather than its entire area. For color space techniques one can distinguish between approaches
using local or global analysis of contrast. Local methods estimate the saliency of a particular
image region based on immediate image neighborhoods, e.g., based on dissimilarities at the
pixel-level [12], using multiscale Difference of Gaussians [13] or histogram analysis [14].
While such approaches are able to produce less blurry saliency maps, they are agnostic of
global relations and structures, and they may also be more sensitive to high frequency content
like image edges and noise. Global methods take contrast relations over the complete image
into account. For example, there are different variants of patch-based methods which estimate
dissimilarity between image patches [14–16]. While these algorithms are more consistent in
terms of global image structures, they suffer from the involved combinatorial complexity.
The method of Achanta et al. [17] works on a per-pixel basis, but achieves globally more con-
sistent results by computing color dissimilarities to the mean image color. They use Gaussian
blur in order to decrease the influence of noise and high frequency patterns. However, their
method does not account for any spatial relationship inside the image, and may highlight
background regions as salient. Cheng et al. [18], who generate 3D histograms and compute
dissimilarities between histogram bins, reported the best performing method among global
contrast-based approaches so far. However, their method has problems handling images with
cluttered and textured background.

Of all these works, the most related to ours is [19], since we also define the saliency in
two elements: dissimilarity, spatial distance. However, we exploit multiple scales other than
central bias, which was used in [19], to decrease the saliency of background patches and
improve the contrast between salient and non-salient regions. In our proposed model, we
first divide the input image into small image patches and measure the saliency value for each
image patch through calculating the differences of color and spatial distance between this
patch and all other patches in the image. But unlike [15], which define the pixel-level saliency
by the contrast of different scales, we compute the saliency on patch-level which ease the
computational burden. Similar to Cheng’s method [18], we also compute the saliency map
from global contrast perspective, which is more useful for applications to segmentation. The
proposed method is different from them that we use PCA to extract the principle information
of the image patches, which represent the background. Moreover, our algorithm calculates
the saliency based on patches and don’t need to segment original image before saliency
detection.

The main contributions of our proposed model include the followings: (1) we propose
to divide an image into small image patches for local information extraction and combine
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information from different image patches in a global perspective; (2) we exploit PCA to
reduce the dimensionality of each patch, which is important in our proposed algorithm to
extract the meaningful spatial structure of the image; (3) we use a multiscale framework
instead of center bias to compute the saliency map. The central bias, proposed by [20], is
based on the principle that dominant objects often raise to the center of the image. This
underlying hypothesis brings two problems. On one hand, background near the center of
image may be more salient than the foreground which is far away from the center of the
image. On the other hand, for a salient object, the part near the center of the input image is
more salient than that far away from the center. The experiments justify the effectiveness of
the proposed scheme with predicting human visual fixation and salient object segmentation.

The remainder of the paper is organized as follows: we state the framework of our saliency
detection method in detail in Sect. 2. In Sect. 3, we demonstrate our experimental results
based on two public image datasets and compare the results with other state-of-art saliency
detection methods. The final section concludes the paper by summarizing our findings.

2 Proposed Saliency Algorithm

In this section, we will state the framework of our saliency detection method in detail. The
steps of our algorithm are fourfold: representing the image patches, using PCA to reduce
dimensionality, computing each patch’s saliency value and implementing our method to
multiple scales. We will describe the details step by step in the following subsections.

2.1 Image Patches Representation

The first step of our algorithm is to divide each original input image into small image patches
to gather local information. For simplicity, we take image patches from the original image
without overlapping. Given an image I with dimension H ×W , non-overlapping patches with
the size of n × n pixels are drawn from it. Generally speaking, the size of the patches located
in the bottom and right boundary is smaller than the regular size. To make sure all patches
have the same dimensions for feature extraction by PCA, we throw out the border regions for
simplicity which don’t have regular size. The total number of patches is L = �H/n�·�W/n�.
Denote the patch as pi , i = 1, 2, . . . , L . Then each patch is represented as a column vector
xi of pixel values. The length of the vector is 3n2 since the color space has three components.
Finally, we get a sample matrix X = [x1, x2, . . . , xL ], L is the total number of patches as
stated above.

Next, we extract features by PCA based on the matrix X of image patches. Another reason
why we detect the saliency object is related to the efficiency. The previous works [10,21,22]
resize the original image to a smaller size in order to ease the heavy computational burden.
And in [18], they ease the complexity by computing saliency map based on regions which
are generated by mean shift. Since the number of image patches or regions in an image is far
smaller than the number of pixels, computing saliency at image patches or regions level can
significantly reduce the computation. Therefore, like [18], the proposed algorithm can also
produce full-resolution saliency map.

2.2 Dimensionality Reduction

In our method, we use principal component analysis (PCA [23]) to reduce the dimensionality
of each image patch which is represented as a vector. Principal components (PCs) throw out
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dimensions that are noises with respect to the saliency calculation. Our proposed model is
based on the conclusion in [24] that while saliency implies uniqueness, the opposite might not
always be true. Therefore, the number of patches divided by dominant object is smaller than
that of background since salient object is unique when compared to background. The features
extracted by PCs according to few largest eigenvalues represent the principal directions of
the features that come from the patches of background. As described in [25], these few PCs
contribute to saliency detection because of their meaningful spatial structure. In our proposed
model, we exploit the above-mentioned features that discriminate the salient object from the
background in the original image. We project the patches to these PCs which not only throw
out the dimensions that are noises with respect to the saliency calculation, but also throw out
the features that can represent the salient object.

Specifically, to effectively describe patches in a relatively low dimensional space, we
reduce data dimension by an equivalent method to PCA. Each column in the matrix
X subtracts the average along the columns. Then, we calculate the co-similarity matrix
A = (X T X)/L2, so the size of the matrix A is L × L . The eigenvalues and eigenvectors
are calculated based on the matrix A selected with their eigenvector U = [u1, u2, . . . , ud ]T

according to the biggest d eigenvalues, where ui is an eigenvector. The size of the matrix U
is d × L . In our method, we use matrix U to compute the saliency of each patch other than
original patch vector.

It is worth noting that [21] and [26] applied independent component analysis (ICA) to a
training set of natural images. The features are calculated as the responses to filters learned
from natural images using ICA. In [25], they used PCA to image patches and analyzed the
image features which are more suitable to salient detection. Unlike [25] which extracted the
PCs by sampling the patches from a large number of images, we pay attention to the PCs only
from the current image. We suppose that PCA over patches within each image emphasized
the variability within the image, which is important to discriminate the salient object from
background.

2.3 Detection of the Patch’s Saliency

In the proposed algorithm, the saliency value of each image patch is determined by two
factors: one is the dissimilarities of color between image patches in a reduced dimensional
space; the other is the spatial distance between an image patch and all other patches.

A patch is salient if the color of its pixels is unique. We should not look at an isolated
patch, but its surrounding patches, which is similar to the definition of center-surrounding
contrast [27] method. Thus, a patch pi is considered salient if the appearance of the patch
pi is distinctive with respect to all other image patches. Specifically, let distcolor (pi , p j ) be
the distance between the patches pi and p j in the reduced dimensional space. Patch pi is
considered salient when distcolor (pi , p j ) is high for ∀ j .

distcolor (pi , p j ) =
d∑

n=1

∣∣uni − unj
∣∣ (1)

The positional distance between patches is also an important factor. Generally speaking,
background patches are likely to have many similar patches both near and far-away in the
image. It is in contrast to salient patches that the latter tend to be grouped together. This
implies that a patch pi is salient when the patches similar to it are nearby, and it is less
salient when the resembling patches are far away. Let dist (pi , p j ) be the Euclidean distance
between the positions of patches pi and p j , which is represented by the two centers of patches
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(a) (b) (c) (d) (e)

Fig. 1 The original images and its saliency maps with different patch sizes; a original images, b saliency
maps with the image patch size 30 × 30; c saliency maps with the image patch size 20 × 20; d saliency maps
with the image patch size 10 × 10; e final saliency maps which combines three results together

pi and p j in the original image, normalized by the larger image dimension. Based on the
observations above we define a dissimilarity measure between a pair of patches pi and p j as:

dissimilari t y(pi , p j ) = distcolor (pi , p j )

1 + dist (pi , p j )
(2)

This dissimilarity measure is proportional to the difference in appearance and inverse
proportional to the positional distance.

To evaluate a patch’s uniqueness, we can compute dissimilarities between the patch and
all other patches and take the sum of these dissimilarities as the saliency value of the related
patch. The saliency value of patch pi can be expressed as follows:

Si = 1 − exp

{
− 1

L

L∑

k=1

dissimilari t y(pi , qk)

}
(3)

As described previously, the patch size would influence the calculation of saliency map.
With a smaller patch size, the saliency map will become more distinguishable, as shown in
Fig. 1 where the saliency map with the smallest image patch size (shown in Fig. 1d) is more
distinguishable than the other two with larger patch size (shown in Fig. 1b, c). Of course,
to obtain more accurate saliency map, we hope to divide image into smaller image patches.
However, in this situation, the computational complexity will increase. The computational
complexity of our algorithm includes two fold: the first is the computational complexity
on preprocessing, such as dividing original images into patches and PCA; the other time
consuming cost is computing dissimilarities between patches. Given an input image with
size of H × W (where H is the height and W is the width) and the patch size of n × n, the
computational complexity of our algorithm is O(L3 + L2), in which L3 and L2 correspond
to the computational cost of preprocessing and dissimilarity calculation respectively, where
L = �H/n� · �W/n�. Therefore, with the smaller patch size, the computational complexity
will be higher.

In addition, large patch size may lead to another problem. In the saliency map, the saliency
values of all pixels in a patch are decided by the dissimilarity between this patch and all other
patches. Therefore, the saliency values in a patch are the same. Our algorithm can not describe
the boundary of small salient object when the patch size is larger than the salient object. We
use Eq. (3) to compute saliency value of the original image with different patch sizes can
obtain the saliency map with different scales. The saliency map with large scales is to detect
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the whole information and that with small scales is to describe the salient object in detail.
Therefore, we extend the saliency detection algorithm to multi-scale to strengthen the saliency
value of the salient areas in an input image.

2.4 Extended by Multiple Scales

Based on the observation that patches in background are likely to have similar patches at
multiple scales, which is in contrast to more salient patches that could have similar patches at
a few scales but not at all of them. (It is equal to the principle proposed by [27,28] that salient
object always smaller than the background.) Therefore, we wish to incorporate multiple
scales to further decrease the saliency of background patches, improve the contrast between
salient and non-salient regions.

For a patch pi of scale r , the saliency value according to Eq. (3) is defined as:

Sr
i = 1 − exp

{
− 1

L

L∑

k=1

dissimilari t y (pr
i , qr

k )

}
(4)

Considering the scales Rc = {r1, r2, . . . , rM }, we use Eq. (4) to calculate the saliency of
patch i as {Sr1

i , Sr2
i , . . . , SrM

i }. The final saliency is computed as:

Si = 1

M

∑

r∈Rc

Sr
i (5)

As aforementioned in last subsection, the computational complexity of the proposed model
is decided by the patch size, which determines the scale of saliency map. Therefore, we
choose the suitable patch size from our experiments to compute the saliency map based on
the consideration of final saliency detection performance and computational complexity.

3 Experiments

We evaluate our method in two aspects: predicting human visual fixations and segmenting
the salient object from natural images. In this section, we compare the proposed method
with the state-of-art models and give the quantitative evaluation on the public database from
the perspective of human visual fixation and salient object segmentation. For human visual
fixation, our approach is compared with seven state-of-the-art saliency detection methods,
including IT [9], AIM [21], SUN [26], GBVS [29], Duan’s method [19], Hou’ method [22]
and RC [18]. In them, all methods except RC are more suitable to fixation. For salient object
segmentation, we compared our results with AC [30], CA [15], FT [17] and RC, which
can generate good segment results on the salient object segmentation database. In addition,
we also give the comparison between our algorithm and the methods used in human visual
fixation on this database.

3.1 Predicting Human Visual Fixations

In this subsection, we show several experimental results on detecting saliency in natural
images. We used the image dataset and its fixation data collected by Bruce and Tsotsos [21]
as a benchmark for comparison. This dataset contains eye fixation records from 20 subjects
for a total of 120 images of size 681×511. To compare our results with [19], we choose 11 as
the number of reduced dimensions which is the best value to maximize saliency predictions.
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(j)(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2 Results on predicting human visual fixation data: a input images; b human fixations; c saliency map
from Itti’s model [9]; d saliency map from Bruce’s model [21]; e saliency map from Zhang’s model [26];
f saliency map from Harel’s model [29]; g saliency map from Hou’s model [22]; h saliency map from Duan’s
model [19]; i saliency map from Cheng’s model [18]; j saliency map from the proposed model

For the patch size, we choose {30, 20, 10} because better results are easy to obtaining in
these values [19]. We obtained an overall saliency map by using YCbCr color space in all
experiments. Some visual results of our algorithm are compared with the state-of-art methods
in Fig. 2.

The comparison results show that the most salient locations on our saliency maps are
more consistent with the human fixation density maps. Note that our method is much less
sensitive to background texture, which is different from AIM, GBVS, RC and SUN. Duan’s
method, which used the center bias mechanism indicating a strong bias to the center of the
image, is easy to detect the salient object near the center of image. Our algorithm not only
detects the dominant object in the center but also that located in the boundary of the orig-
inal image. We also computed the area receiver operating characteristic (ROC) curve [21],
i.e., the area under the curve to quantitatively evaluate the algorithm performance. To neu-
tralize the effects of center bias during the computation of ROC area, we used the same
procedure as in [26]. More specifically, we first compute true positives from the saliency
maps based on the human eye fixation points. In order to calculate false positives from the
saliency maps, we use the human fixation points from other images by permuting the order
of images. This permutation of images is repeated 100 times. To calculate the area under
the ROC curve, we compute detection rates and false alarm rates by thresholding histograms
of true positives and false positives at each stage of shuffling. The final ROC area shown in
Table 1 is the average value over 100 permutations. The mean and standard errors are also
reported in Table 1. It is observed that our model outperforms all other methods in terms of
ROC area.

3.2 Salient Object Segmentation Database

We have evaluated the results of our approach on the publicly available database provided
by Achanta et al. [17]. To the best of our knowledge, the database is the largest of its kind,
and has ground truth in the form of accurate human-marked labels for salient regions. In
this subsection, we compare the proposed method with state-of-the-art saliency detection
methods on the performance of segmenting salient object in nature images.
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Table 1 Performance in
predicting human visual fixation
data

SE Standard errors

Attention model ROC (SE)

Itti et al. [9] 0.6146 (0.0008)
AIM [21] 0.6727 (0.0008)
SUN [26] 0.6682 (0.0008)
GBVS [29] 0.6818 (0.0007)
Duan et al. [19] 0.6837 (0.0008)
RC [18] 0.6839 (0.0007)
Hou et al. [22] 0.6841 (0.0007)
Our method 0.6842 (0.0007)

2 4 6 8 10 12 14 16 18 20
0.68

0.7

0.72

0.74

0.76

0.78

0.8

PCs

R
e

ca
ll

duan

ours

Fig. 3 The relationship between the Recall and the dimension when patch size set to 14

We use our method and the others to compute saliency maps for all the 1,000 images
in the database. To reliably compare our method with Duan’s algorithm on performance
according to the selection of PCs number, we vary the number of PCs from 2 to 20. Figure
3 shows the comparison between the proposed algorithm and Duan’s method on the index
of recall when choosing different number of PCs. From Fig. 3, average recall of the pro-
posed method approaches 0.8 corresponding to the number of PCs from 3 to 5. With the
number of PCs increase, recall is decrease. That is to say, except the first few PCs, other
features in the original image can not discriminate foreground and background because they
do not have meaningful spatial structure. We choose 4 as PCs number which is also the
best selection to Duan’s method based on the low curve showed in Fig. 3. The patch size
set to be the same to previous subsection, which is still the best parameter in this data-
base.

Visual comparison of saliency maps obtained by the proposed method and other algo-
rithms can be seen in Figs. 4 and 5. The comparison results show that the saliency map
generated by IT [9] always detect the location of salient object approximately rather than
a whole area. CA [15], which focuses on the boundary of salient area, is failing to seg-
ment the salient object from natural images. An excellent model, termed FT [17], generally
detect the foreground from input images. However, it is easy to influence by the background
that the salient area contains not only salient object but also clutter background. The results
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 4 Saliency maps from different saliency detection models on segmentation image database. a Original
image, b–k are the results generated by IT [9], GBVS [29], MZ [12], SUN [26], Hou et al. [22], Duan et al.
[19], CA [15], FT [17], RC [18] and the proposed algorithm, respectively

generated by RC [18] showed in Figs. 4 and 5g are outstanding in the models mentioned
before. But similar to FT, it is also influenced by the clutter background. The reason might be
that RC compute color contrast based on color histogram to measure the difference between
two regions. It failed when the regions located in salient object and in background have
the same color histogram. From the ninth to eleventh rows in Fig. 5, RC detects the con-
tour of the salient object. But the salient regions contain not only the salient object, but
also the clutter background. On the contrary, such favorable saliency maps can be achieved
since our algorithm robustly works in cluttered scenes, which fits with the human visual
perception.

Note that Duan’s method can detect the foreground in the image. However, the salient
area just focuses on the center of the image. This characteristic might be lead to two prob-
lems: first, the foreground near the center of the input image is more salient than that far
from the center; second, the background near the center is more salient than the foreground
located in the boundary of the input image. For instance, in Fig. 5c, the head of the horse
and the background which located in the center of the input image is more salient than
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(i)(h)(e)(d) (j)(c)(b)(a) (f) (g)

Fig. 5 Saliency maps from different saliency detection models and corresponding binary masks. a original
images, b ground truth, c, e, g and i are the saliency maps from Duan’s method, FT, RC and the proposed
method, respectively. d, f, h and j are the binary masks results using Grabcut according to (c), (e), (g) and
(i) respectively

the legs which are located in the boundary of the original image. Our method, which can
detect the salient area in the whole image, overcomes these problems. In addition, com-
paring with Duan’s method, our algorithm can detect the salient object with precision
boundary.

Thus, the quantitative evaluation for a saliency detection algorithm is to see how much
the saliency map from the algorithm overlaps with the ground-truth saliency map. Here,
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Fig. 6 Precision and recall rates for all algorithms

we exploit the precision, recall, and F-measure to evaluate the performance of our proposed
model. Precision is computed as the ratio of correctly detected saliency region to the detected
salient region from the saliency detection algorithm. Recall is calculated as the ratio of
correctly detected salient region to the ground-truth salient region. Given a ground-truth
saliency map G = [g1, g2, . . . , gn] and the detected saliency map S = [s1, s2, . . . , sn] for
an image, we have:

presicion =
∑

x

gx sx/
∑

x

sx (6)

recall =
∑

x

gx sx/
∑

x

gx (7)

F-measure, a harmonic mean of precision and recall, is a measure that combines precision
and recall. It is calculated as follows:

Fβ = (1 + β)precision × recall

β × precision + recall
(8)

where β is a positive parameter to decide the importance of precision over recall in computing
the F-measure.

To obtain the quantitative evaluation, we perform two different experiments. In the first
experiment, similar to [17], we use the simplest way to get a binary segmentation of salient
objects by thresholding the saliency map with a threshold from 0 to 255. Figure 6 shows
the resulting precision versus recall curves. From Fig. 6, the minimum recall values of our
methods are higher than those of the other methods, because the saliency maps computed by
our methods are smoother and contain more pixels with the saliency value 255.

In second experiment, we use the iterative GrabCut [18] to obtain a binary mask for a
given saliency map. To automatically initialize GrabCut, we use a segmentation obtained by
binarizing the saliency map using a fixed threshold. We set the threshold to 0.3 empirically.
Once initialized, we iteratively run GrabCut 4 times to improve the saliency cut result. Final
saliency cut result generated by this way is as our binary mask to obtain the quantitative
evaluation (see Fig. 5).

We use β = 0.3 in our work for fair comparison. The comparison results are shown in
Fig. 7. Generally speaking, the precision indicates the performance of the saliency detection
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Fig. 7 The experiment results for the comparison between our proposed model and other state-of-art methods

Table 2 Average time taken to compute a saliency map for images in the database by [17]

Method IT Hou et al. [22] GB CA SUN MZ FT RC Duan Our method

Time (s) 0.725 0.086 2.14 53.67 8.97 0.084 0.48 0.317 3.587 4.43
Code Matlab Matlab Matlab Matlab Matlab C++ Matlab C++ Matlab Matlab

Algorithms were tested using a Dual Core 1.8 GHz machine with 1 GB RAM

algorithms compared with ground-truth saliency map. To compare the proposed model with
others, we always see the precision value for different algorithms, for the precision value is
the ratio of the correctly detected region over the whole detected region. In Fig. 7, we find
out that the performance of our algorithm is close to that of RC, but be better than others. In
addition, compared with Duan’s method on this database (precision=85 %, recall=77 %),
we achieved better accuracy (precision=90 %, recall=88 %).

To better understand the proposed model, we compare the average time taken by each
method which summarized in Table 2. For the methods mentioned in Table 2 except Duan’s
method, we used the author’s implementations. While for Duan’s method, we implemented
the algorithm in Matlab since we could not find the author’s implementation. Our method is
slower than others as it requires feature extraction using PCA which is rather time-consuming
in this processing. Furthermore, our method is also slower than Duan’s method since our
algorithm request computing saliency maps three times, but produces superior quality results.
Similar to Duan’s method, the computation times of the proposed algorithm are decided by the
speed of PCA process which is used for feature extraction. Moreover, the time-consuming of
each step and corresponding time cost by PCA are compared as shown in Fig. 8. It is observed
that more than half of the computation times spend in the process of PCA (2.62 s) in our finally
saliency calculation (4.43 s). On the other hand, the computation time rises significantly
with the lower of the scale of patches which is important for the accuracy of our finally
salient object segmentation. In future, we would speed up the PCA process or find another
efficient feature extraction method to make our algorithm maintain a reasonable computation
time.
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Fig. 8 A study of the efficiency with different scales of patch on Achanta’s image database

4 Conclusions

We present a multiscale saliency detection algorithm based on image patches to detect
the saliency object in color image. In this algorithm, an input image is segmented into
patches and exploits PCA to reduce the dimensions which are noises with respect to the
saliency calculation. Our saliency algorithm is based on three elements: color dissimilar-
ity of patches, spatial distance and multiple scales. In according with the inadequacy of
the methods used center-bias, the proposed algorithm used multiple scales to solve two
problems. First, background near the center of image may be more salient than the fore-
ground which is far away from the center of the image. Second, for a salient object, the
part near the center of the input image is more salient than that far away from the cen-
ter. In addition, using multiple scales can also to decrease the saliency of background
patches and to improve the contrast between salient and non-salient regions. We evaluate
our method on two publicly available data sets and compare our scheme with the state-
of-art models. The resulting saliency maps are much less sensitive to background tex-
ture for predicting human visual fixations. Furthermore, it is also suitable to salient object
segmentation.

In the future, we plan to investigate the practicability of the proposed saliency maps
can be used for efficient object detection, reliable image classification, robust image scene
analysis, leading to improved image retrieval. In addition, the proposed algorithm has high
time complexity since the process of PCA is time-consuming. How to make our algorithm
more efficient is also our future work.
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