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In this paper we propose a novel method combining graph embedding and difference
criterion techniques for image feature extraction, namely two-dimensional maximum
embedding difference (2DMED). This method directly extracts the optimal projective vec-
tors from 2D image matrices by simultaneously considering characteristic that is the intra-
class compactness graph, the margin graph and inter-class separability graph, respectively.
In this method, it is not necessary to convert the image matrix into high-dimensional
image vector so that much computational time would be saved. In addition, the proposed
method preserves the manifold reconstruction relationships in the low-dimensional sub-
space. Experimental results on the ORL, Yale face and USPS database show the effectiveness
of the proposed method.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Over past few decades, many dimensionality reduction and feature extraction methods have been developed [1–10] in
the fields of image processing, computer vision, and pattern recognition.

In many applications such as face and handwritten character recognition, 2D image matrices are usually transformed into
1D image vectors through column by column or row by row concatenation. On the one hand, the image-to-vector transfor-
mation procedure may cause loss of useful structural information embedded in the original images. On the other hand, the
resulting 1D image vectors of face images usually lead to a high dimensional image vector space and covariance matrix,
which will potentially cause a heavy computational burden. This also usually causes by the small sample size (SSS) problem,
which cannot be implemented because of the matrix singularity.

To overcome those problems, Yang et al. proposed two-dimensional principal component analysis (2DPCA) [11,12] which
directly extract image features from 2D image matrices and thus the image matrices do not need to be transformed into vec-
tors. Jing et al. [13], Li and Yuan [14], Xiong et al. [15] and Yang et al. [16] extended the idea and presented two-dimensional
linear discriminant analysis (2DLDA) using image matrices. Recently, (2D)2PCA [17], (2D)2FLD [18] and (2D)2PCALDA [19]
have been proposed, in which the authors investigated two-directional two-dimensional projections along not only in
row direction but also in column direction to further reduce the dimension. There are lots of methods successful applying
to linear data, such as PCA, LDA and their extensions involve probabilistic principal component analysis (PPCA) [20], mixture
27.
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of PCA [21], independent component analysis (ICA) [22], and incremental PCA [23]. However, they may fail to explore the
essential structure of data with nonlinear distribution [24,25].

In real world applications, the nonlinearity encountered mostly appears in non-Gaussian or manifold-value data. For non-
Gaussian or manifold-value data, we usually deal with it from local patches because non-Gaussian or manifold-value data
can be viewed as locally. So, they can be viewed as locally Euclidean [26,27]. Recently, kernel-based techniques and manifold
learning-based have been developed to deal with nonlinear data. Two most common kernel-based techniques are kernel
principal component analysis (KPCA) [28] and kernel linear discriminant analysis (KLDA) [29], which can be viewed as
the kernel versions of PCA and LDA. However, kernel-based methods improve the linear discriminability at the cost of high
computational requirements with increasing the dimensions. Furthermore, the way of how to select the most suitable kernel
and assign the optimal parameters in kernel techniques is remain unclear. Manifold learning-based techniques are used to
find the intrinsic nonlinear structure of data hidden in the high dimensional observation space. He et al. [30] and He and
Niyogi [31] proposed locality preserving projections (LPP), which is a linear subspace learning method derived from Lapla-
cian Eigenmaps [32,33]. LPP finds an embedding space that preserves local information and detects the best essential face
manifold structure. 2DLPP [34–36] methods are proposed to directly extract the proper features from image matrices based
on the locality preserving criterion. More recently, some variant versions of 2DLPP such as two-dimensional local graph
embedding discriminant analysis (2DLGEDA) [37] and two-dimensional discriminant locality preserving projection [38]
were also proposed to improve the performance of 2DLPP.

However, the computational cost of LPP and its 2D extensions is high because they involve eigen-decomposition of dense
matrices. And the possible singularity of within (or intra)-class scatter matrix is statistical properties which are used to ob-
tain the estimates of the covariance matrices in the same class, particularly when the image size is large. Therefore, in this
paper we present a two-dimensional maximum embedding difference (2DMED) method for feature extraction. This method
does not need to convert image matrix into high-dimensional image vector and avoids the computation of inverse matrix so
that additional computation time can be saved to a certain extent. The idea of 2DMED is very similar to marginal Fisher anal-
ysis (MFA) [12], but MFA cannot avoid the singularity problem using the Fisher discriminant criterion to find a set of optimal
discriminant projection vectors. All of the 2DLDA, 2DLPP, and 2DLGEDA need to compute inverse matrices, while the pro-
posed 2DMED method successfully avoids this computation by the virtue of difference trace. 2DMED saves significant
amount of computational and processing time for features extraction and obtains the optimal projective vectors from 2D
image matrices by simultaneously considering characteristic that is the intra-class compactness, the margin and inter-class
separability using difference criterion techniques [39], respectively. This projection is a transformation of data points from
one axis system to another, and is an identical process to axis transformations in graphics.

The proposed method is very similar to two-dimensional maximum scatter difference (2DMSD) [40] and two-dimen-
sional local graph embedding based on maximum margin criterion (2DLGE/MMC) [41] method, both of which adopt the dif-
ference of both between (or inter)-class scatter matrix and within (or intra)-class scatter matrix as discriminant criterion.
The between (or inter)-class scatter matrix is statistical properties which are used to make the estimates of the covariance
matrices in the different class. However, 2DMSD failed to deal with nonlinear data and 2DLGE/MMC did not consider the
margin separability characteristic which may degrade recognition rates.

The main novelties of our new method come from the following perspectives:

1. The proposed method uses three graphs to extract the optimal discriminant projective vectors without assuming the par-
ticular form of class densities.

2. The proposed method avoids the small sample size problem since it does not need to compute any matrix inversion.
3. The proposed method is capable of having more feature dimensions, which is not limited to (compared to previous upper

bound) c � 1 (where c is the number of different classes), as in LDA.

The rest of the paper is organized as follows: In Section 2 we briefly review the basic 2DMSD, 2DLPP, 2DLGEDA, and
2DLGE/MMC methods, respectively. In Section 3, we introduce the idea, the theoretical analysis, and the outline of the pro-
posed method in detail. In Section 4, experiments on ORL, Yale face databases and USPS database are presented to demon-
strate the effectiveness of 2DMED. In addition, we also present overall observations and give some discussions in Section 4.
At last, we draw concluding remarks and a discussion of future work in Section 5.
2. Related works

Now let us consider a set of N sample images X1,X2, . . . ,XN taken from an (m � n)-dimensional image space. We design a
projected matrix, which maps the original (m � n)-dimensional image space into an n � d-dimensional feature space. Let
X = [x1,x2, . . . ,xd] be an n � d-dimensional matrix, where xi is a unitary column vector. The proposed method is to project
each image c onto j and to consider the following transformation:
Yi ¼ XiX; i ¼ 1;2; . . . ;N ð1Þ
Then we get a m � d-dimensional projected matrix Yi for each image Xi.
The symbols used in this section are listed in Table 1.



Table 1
List of symbols.

Symbol Description

N The number of samples
X The set of Xi

m � n The dimensional of Xi

Yi The feature matrix of Xi

X The projected matrix
xi The unitary column vector
c The number of classes
Bi The label of ith class
Xi The class mean matrix of training samples in ith class
Ni The total number of training samples in ith class
Gb The between-class scatter matrix
Gw The within-class scatter matrix
S The similarity matrix
Ww

ij ðW
c
ijÞ The intra-class weight

Wb
ij

The margin weight

Wp
ij

The inter-class weight

D The diagonal matrix
� The Kronecher product of matrix
In The identity matrix of order n
L The Laplacian matrix
k The generalized eigenvalue
d The feature matrix dimension
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2.1. Two-dimensional maximum scatter difference (2DMSD) [40]

MMC and 2DMSD are based on the difference between between-class scatter matrix and within-class scatter matrix.
However, MMC is obtained the optimal projection subspaces from 1D image vectors whereas 2DMSD can directly extracts
the optimal projection subspaces from 2D image matrices. 2DMSD is aimed at preserving maximum discrimination. Suppose
each of X1,X2, . . . ,XN belongs to one of c classes B1,B2, . . . ,Bc. The projection direction is chosen by discriminatory criteria as
the following:
JðxÞ ¼ arg max
x

½xTðGb � GwÞx� ð2Þ

where Gb ¼
1
N

Xc

i¼1

NiðXi � XÞðXi � XÞT ð3Þ

Gw ¼
1
N

Xc

i¼1

X
Xj2Bi

ðXj � XiÞðXj � XiÞ
T ð4Þ
where Xi is the average image of all the sample images in the ith class Bi. Ni is the number of sample images in the ith class Bi.
The matrix Gb is called between-class scatter matrix and Gw is called within-class scatter matrix. X = [x1,x2, . . . ,xd] are
exactly the orthogonal generalized eigenvectors corresponding to the first d largest generalized eigenvalues of matrix
Gb � Gw.

2.2. Two-dimensional Laplacianfaces (2DLPP) [36]

Let G = {X, S} denote the complete undirected weighted graph with the vertex-set X and the similarity matrix S e RN�N.
Since each node of the nearest-neighbor graph corresponds to an image Xi, the purpose of 2DLPP is to ensure the connected
nodes stay as close as possible and to preserve the intrinsic geometry of the data and local structures. The similarity matrix S
can be Gaussian weight or uniform weight of Euclidean distance using k-neighborhood or e-neighborhood, which is defined
as:
Sij ¼
1; kXi � Xjk2

< e
0; otherwise

(
ð5Þ
Hence, the objective function of 2DLPP is defined as:
min
X

i;j

kYi � Yjk2Sij ð6Þ
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where Yi = xTXi and k�k represents the L2 norm. After some matrix analysis steps, the minimization problem of Eq. (6)
becomes:
arg min
x

xT XðL� InÞXTx

s:t: xT XðD� InÞXTx ¼ 1
ð7Þ
where the size of training space X = [X1,X2, . . . ,XN] is N(m � n), and D is the diagonal matrix whose entries are column or row
sums of S. L = D � S is the Laplacian matrix, In is an identity matrix of order n, and operator � is the Kronecher product of
matrix.

The optimal d projection vectors that minimize the objective function by the minimum eigenvalue solution to the gen-
eralized eigenvalue problem:
XðL� InÞXTx ¼ kXðD� InÞXTx ð8Þ
2.3. Two-dimensional local graph embedding discriminant analysis (2DLGEDA) [37]

2DLGEDA is proposed as a supervised extension of 2DLPP which can directly work on 2D image matrices.
The goal of 2DLGEDA is to preserve graphs to characterize 2D image intra-class compactness and margin separability. 2D

image intra-class scatter matrix is characterized in the intrinsic graph Ww
ij by the term:
Sw ¼
XN

i¼1

XN

j¼1

kYi � Yjk2Ww
ij ¼ 2xT XðLw � InÞXTx ð9Þ
where
Ww
ij ¼

1; Xi 2 Nþkw
ðXjÞ or Xj 2 Nþkw

ðXiÞ
0; otherwise

(

where Dw is the diagonal matrix whose entries are column or row sums of Ww, In is an identity matrix of order n, operator �
is the Kronecker product of matrix, Nþkw

ðXiÞ indicates the samples in the kw nearest neighbors of Xi in the same class, and x
denotes the projection vector, Lw = Dw �Ww.

Similarly, 2D image margin separability scatter is characterized in the between-class graph Wb
ij by the term:
Sb ¼
XN

i¼1

XN

j¼1

kYi � Yjk2Wb
ij ¼ 2xT XðLb � InÞXTx ð10Þ
where
Wb
ij ¼

1; if ði; jÞ 2 Pkb
ðptÞ or ðj; iÞ 2 Pkb

ðptÞ
0; otherwise

�

where Pkb
ðptÞ is a set of data pairs in the kb nearest pairs among a set {(i, j)|i e pt, j R pt}, and pt denotes the index set of tth

class and t is varied from 1 to c. Db is the diagonal matrix whose entries are column or row sums of Wb, and Lb = Db �Wb.
Finally, the criterion of 2DLGEDA is formally similar to the Fisher criterion since they are both Reyleigh quotients and the

optimal projections can be obtained by solving the generalized eigen-equation:
XTðLb � InÞXx ¼ kXTðLw � InÞXx ð11Þ
where k is generalized eigenvalue corresponding to the eigenvector x. Then, the optimal transformation matrix of 2DLGEDA
is composed of the eigenvectors associated with the first d larger eigenvalues.

2.4. Two-dimensional local graph embedding based on maximum margin criterion (2DLGE/MMC) [41]

2DLGE/MMC is adopted the difference of both intra-class compactness and the inter-class separability as discriminant
criterion. Since the local graph embedding formed by the local neighborhood can be regarded approximately linear, an opti-
mization objective function can be devised to minimize the difference between the intra-class scatter matrix and the inter-
class scatter matrix as follows:
JðxÞ ¼ min
Xk1

j¼1

kYi � Yj
ik

2 � a
Xk2

q¼1

kYi � Yiqk2

 !
¼min

XN

i¼1

XN

j¼1

kYi � Yjk2Wc
ij � a

XN

i¼1

XN

j¼1

kYi � Yjk2Wp
ij

 !

¼ trðxT XðLc � InÞXTx� axT XðLp � InÞXTxÞ ð12Þ
where a is an adjustable parameter which balances xTX(Lc � In)XTx and xTX(Lp � In)XTx.



Table 2
The main characteristics of different methods.

Characteristics Method

2DMSD 2DLPP 2DLGEDA 2DLGE/MMC 2DMED

Criterion Difference Fisher Fisher Difference Difference
Data Linear Nonlinear Nonlinear Nonlinear Nonlinear
Image space Global Local Local Local Local
Class information Supervised Unsupervised Supervised Supervised Supervised
Intra-class graph None Sij Ww

ij Wc
ij Wc

ij

Margin graph None None Wb
ij

None Wo
ij

Inter-class graph None None None Wp
ij Wp

ij

Fig. 1
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where Wc
ij ¼

1; if Xj is in the Kc nearest from same class of Xi

0; otherwise

�
ð13Þ
Wp
ij ¼

1; if Xj is in the Kp nearest from different classes of Xi

0; otherwise

�
ð14Þ
Then we can easily find that X consists of the eigenvectors associated with top d eigenvalues of the above eigen-equation.
At last, the main characteristics of different methods are listed in Table 2.
Compared with other methods, 2DMED has several advantages including avoiding the SSS problem and reducing the

computational costs by difference criteria. On the other hand, 2DMED is still a local and supervised method. At last, 2DMED
fully captures the geometrical structure on data manifolds by defining three graphs Wc

ij; Wo
ij and Wp

ij.
3. Two-dimensional maximum embedding difference (2DMED)

3.1. Foundations and problem statement

In Fig. 1, suppose there are two pattern classes and we preserve graphs to characterize the adjacency relationships of
intra-class compactness, inter-class separability and margin-class separability, respectively.

Graph-I has the graph characteristic of intra-class compactness, where a vertex pair is connected if one vertex is among
the k1-nearest neighbors of the other and the elements of the pair belong to the same class.
Graph-II has the graph characteristic of inter-class separability, where the k2-nearest vertex pairs in a way that one
in-class element and the other out-of-class element are connected.
Graph-III has the graph characteristic of margin-class separability, where the k3 marginal points from different classes are
connected.

2DLPP characterizes intra-class compactness by graph-I, which finds an embedding that preserves local information and
detects the intrinsic image manifold structure. However, 2DLPP does not consider the adjacency relationships between
different classes such as graph-IIand graph-III.
. The adjacency relationships graph characteristic of intra-class compactness, inter-class separability and margin-class separability, respectively.
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To overcome this problem, 2DLGE/MMC and 2DLGEDA are proposed to characterize inter-class separability and margin-
class separability according to graph-IIand graph-III, respectively. 2DLGE/MMC and 2DLGEDA are supervised method while
2DLPP is unsupervised method. However, 2DLGE/MMC is to use the difference criterion while 2DLGEDA is to adopt the Fisher
criterion.

However, 2DLGE/MMC does not consider the margin-class separability and 2DLGEDA does not consider inter-class sep-
arability which might cause degradation of recognition rate. Therefore, 2DMED not only contains inter-class separability, but
also considers margin-class separability. After the linear transformation, the considered points in the same class are placed
as close as possible, while those between different classes are placed as far as possible. We formulate this problem as a con-
strained optimization problem, in which the global optimum can be effectively and efficiently obtained. Compared with
2DLPP, 2DLGEDA and 2DLGE/MMC, our method is able to extract more discriminative features by considering three graphs.

3.2. The proposed scheme and algorithm

Let G = {X, W} denote the complete undirected weighted graph with the vertex-set X and the similarity matrix W e RN�N. It
is easy to see that each element of W measures the similarity of a pair of vertices. For supervised learning problems, the class
label for each sample Xi is assumed to be pt, t e {1,2, . . . ,c}.

The diagonal matrix D and the Laplacian matrix L of a graph G are defined as:
L ¼ D�W; D ¼ diagðD11; . . . ;DNNÞ; Dii ¼
X
j–i

Wij; 8i ð15Þ
We preserve graph characteristic to calculate similarity matrix in Fig. 1, and then we propose the 2DMED algorithm for
feature extraction.

The similarity matrix in the intra-class compactness graph can be defined as follows:
Wc
ij ¼

1; if ði; jÞ 2 pc; and i 2 NþKc
ðjÞ or j 2 NþKc

ðiÞ
0; otherwise

(
ð16Þ
where NþKc
ðiÞ indicates the index set of the Kc nearest neighbors of Xi in the same class.

The similarity matrix in the margin separability graph can be defined as follows:
Wp
ij ¼

1; if ði; jÞ 2 PKp ðptÞ or ðj; iÞ 2 PKp ðptÞ
0; otherwise

�
ð17Þ
where PKp ðcÞ is a set of data pairs that are in the Kp nearest pairs among the set {(i, j)|i e pt, j R pt}.
The similarity matrix in the inter-class separability graph can be defined as follows:
Wo
ij ¼

1; if i 2 N�Ko
ðjÞ or j 2 N�Ko

ðiÞ
0; otherwise

�
ð18Þ
where N�Ko
ðiÞ indicates the index set out of the Ko nearest neighbors of Xi or in the Ko nearest neighbors of Xi but not in the

same class.
Due to introducing the similarity matrix Wc

ij; the intra-class scatter matrix from the intra-class graph can be expressed to:
JcðxÞ ¼
X

i

X
j

kYi � Yjk2Wc
ij ¼

X
i

X
j

kxT xi �xT xjk2Wc
ij ¼ 2xT XððDc �WcÞ � InÞXTx ¼ 2xT XðLc � InÞXTx ð19Þ
where Lc = Dc �Wc.
After characterizing the intra-class scatter matrix, the margin separability scatter matrix can be characterized by the fol-

lowing expression:
JpðxÞ ¼
X

i

X
j

kYi � Yjk2Wp
ij ¼

X
i

X
j

kxT xi �xT xjk2Wp
ij ¼ 2xT XððDp �WpÞ � InÞXTx ¼ 2xT XðLp � InÞXTx ð20Þ
where Lp = Dp �Wp.
At last, the inter-class scatter matrix can be characterized as following:
JoðxÞ ¼
X

i

X
j

kYi � Yjk2Wo
ij ¼

X
i

X
j

kxT xi �xT xjk2Wo
ij ¼ 2xT XððDo �WoÞ � InÞXTx ¼ 2xT XðLo � InÞXTx ð21Þ
where Lo = Do �Wo.
After the intra-class scatter matrix, the margin scatter matrix and the inter-class scatter matrix have been constructed; an

optimization objective function can be devised to maximize the difference between the margin scatter matrix, the inter-class
scatter matrix and the intra-class scatter matrix. That is:
JðxÞ ¼ max tr½ð1� aÞðJp þ JoÞ � aJc� ð22Þ
where a (0 < a < 1) is an adjustable parameter to balance Jc(x) and Jp(x).
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Then we can easily find that X consists of the eigenvectors associated with d top eigenvalues by solving the above
generalized eigen-equation.

After the training by 2DMED, the feature matrix of each image Xi and the transformation matrix are obtained. Feature
matrices are transformed to 1D image vectors, and then a nearest-neighbor classifier can be used for classification.

Given two images X1, X2 represented by 2DMED feature vectors Y1 ¼ ðy1
1; y

2
1; . . . ; yd

1Þ and Y2 ¼ ðy1
2; y

2
2; . . . ; yd

2Þ, then the
dissimilarity d(Y1, Y2) is defined as:
dðY1;Y2Þ ¼
Xd

k¼1

kYk
1 � Yk

2k
2 ð23Þ
If feature matrices of training images are Y1,Y2, . . . ,YN (N is the total number of training images), and each image is
assigned to a class pt. Then for a given test image Y, if dðY;Ypl

Þ ¼minj dðY ;YjÞ and Yj e pj, the resulting decision is Y e pl.
The proposed feature extraction algorithm can be summarized as follows:

Step 1: Constructing the similarity matrix Wc
ij; Wp

ij and Wo
ij using Eq. (16)–(18).

Step 2: Calculating the intra-class scatter matrix Jc(x), the margin scatter matrix Jp(x) and the inter-class scatter matrix
Jo(x) using Eqs. (19)–(21), respectively.
Step 3: Extracting the sample feature using Eq. (22).
Step 4: Projecting all samples onto the obtained optimal discriminant vectors and yielding the projected eigenvectors
using Eq. (1).
Step 5: Classifying the projected eigenvectors with a classifier using Eq. (23).

3.3. Comparisons of computation complexity and space complexity

As it is mentioned before Section 1, the computational complexity of MFA is high. Supposed the image size is n � n, the
computational cost of MFA with k-NN penalty graph is:

Oðm2nþm2 log mþ dn4 þ n4mþ n2m2 þ 1
4 ðkðk� 1ÞÞ2nþ 1

4 ðkðk� 1ÞÞ2 log 1
2 kðk� 1Þ
� �

Þ. O(m2n) is used to calculate the pair-
wise distance between m samples with n-dimensional features and (m2log m) is used for k-nearest neighbors finding for all

the m samples. O 1
4 ðkðk� 1ÞÞ2n
� �

is used for calculating the pairwise distance in k-nearest neighbors samples and

O 1
4 ðkðk� 1ÞÞ2 log 1

2 kðk� 1Þ
� �� �

for finding all the local k-nearest neighbors data pairs. Computing the scatter matrix XLpXT

needs O(n4m + n2m2) in MFA. O(dn4) is used to compute the first d generalized eigenvectors. For the proposed 2DMED,

the computational complexity is Oðm2nþm2 log mþ dn2 þ n2m2 þ 1
2 ðkðk� 1ÞÞ2nþ 1

2 ðkðk� 1ÞÞ2 log 1
2 kðk� 1Þ
� �

Þ in total. Com-
puting the scatter matrix X(Lp � In)XT needs O(n2m2) in 2DMED. O(dn2) is used to compute the first d generalized eigenvectors
of 2DMED. Usually, O(dn4 + n4m + n2m2)� O(dn2 + n2m2). Thus, 2DMED’s computational complexity is far less than that of
MFA. Particularly, when n is relatively large (when compared with m), MFA is significantly time consuming. Moreover,
the space complexity needs O(n4) for the vector-based MFA. However, the 2DMED algorithm framework can work on the
2D scatter matrix and thus only needs O(n2). Therefore, 2DMED greatly saves memory cost, which is the same as the other
2D based projection methods such as 2DPCA, 2DLDA and 2DLPP.
4. Experiments

To evaluate the proposed 2DMED algorithm, we compare it with the PCA, LDA, MMC, LPP, MFA, Wavelet + ICA + LDA,
2DPCA, 2DLDA, 2DMSD, 2DLPP, 2DLGEDA and 2DLGE/MMC algorithm in three databases: on the face recognition (on the
ORL and Yale face databases) and handwriting digital recognition (on the USPS database). When the projection vectors
are computed from the training part, all the images including the training part and the test part are projected to feature
space. Euclidean distance and nearest neighborhood classifier are used in all the experiments. The experiments are carried
out on a PC (CPU: P4 2.8 GHz, RAM: 1024 MB).
4.1. Data corpora

The ORL database (http://www.uk.research.att.com/facedatabase.html) contains images from 40 individuals, each provid-
ing 10 different images. The facial expressions and facial details (glasses or no glasses) also vary. The images are taken with a
tolerance for some tilting and rotation of the face of up to 20 degrees. Moreover, there is also some variation in the scale of up
to about 10%. All images are normalized to a resolution of 56 � 46. Fig. 2 shows sample images of one person from ORL face
database.

The Yale face database (http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html) contains 165 images of 15 individu-
als (each person providing 11 different images) under various facial expressions and lighting conditions (i.e., center-light,
with glasses, happy, left-light, without glasses, normal, right-light, sad, sleepy, surprised, and winking). In our experiments,

http://www.uk.research.att.com/facedatabase.html
http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html


Fig. 2. Sample images of one person in the ORL face database.

Fig. 3. Sample images of one person in the Yale database.
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each image is manually cropped and resized to 50 � 40 pixels. Fig. 3 shows sample images of one person on the Yale
database.

The USPS handwriting digital data includes 10 classes from ‘‘0’’ to ‘‘9’’. Each class has 1100 examples. In our experiment,
we select a subset from the original database. We cropped each image to be size of 16 � 16. There are 100 images for each
class in the subset and the total number is 1000. Fig. 4 displays a subset of digital ‘‘2’’ from original USPS handwriting digital
database.

4.2. Optimization parameters

How to select the weight parameter a is an important problem in feature extraction. To find how the weight parameter a
affects the recognition performance, in the first experiment, we change a from 0.1 to 0.9 with step 0.1 on the ORL, Yale face
databases and USPS database, respectively. Each database is divided 50% for training, and 25% each for validation and testing
[42]. So, the first 4, 5 and 40 samples of each class randomly selected to compose the training set, the second 3, 3 and 30
samples of each class compose the validation set, and the remaining 3, 3 and 30 samples form the test set on the ORL, Yale
face databases and USPS database, respectively. And this experiment run 10 times. Figs. 5–7 displays the maximal average
recognition rates (%) of 2DMED versus the dimensions when the training set for training and the validation set for testing
with varied a on the three databases.

From Figs. 5–7, it can be found that the effectiveness of the 2DMED algorithm is sensitive to the value of the weight
parameter a and the best recognition rate obtained with 2DMED is 95.52%, 94.96% and 90.37% when a = 0.6, a = 0.3 and
a = 0.2, respectively. This indicates that the proportion of the intra-class compactness matrix, the margin separability matrix
and the inter-class separability matrix are different. So, in the later experiment, the value of adjustable weight parameter a is
taken to be a = 0.6, a = 0.3 and a = 0.4 on the three databases, respectively.

Based on these parameters, we obtain the maximal average recognition rates of the proposed method on the test set, as
listed in Table 3.

4.3. Experimental results and analysis

In the second experiment, we also test the impact of the nearest-neighbor parameter k (Kp and Ko) on the recognition per-
formance. If the value of k is too small, it is very difficult to preserve the topologic structure in the low-dimensional feature
Fig. 4. The sample digital images ‘‘2’’ from USPS handwriting database.



Fig. 5. The maximal average recognition rates (%) of 2DMED versus the dimensions when the training set for training on the ORL face database with varied a.

Fig. 6. The maximal average recognition rates (%) of 2DMED versus the dimensions when the training set for training on the Yale face database with varied
a.
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space. On the contrary, if the value of k is too large, it is very difficult to depict the assumption of local linearity in the high-
dimensional feature space.

The Kc-nearest-neighbor parameter in graph embedding method is chosen as Kc = l � 1 where they can get best recogni-
tion rates and within-class samples are well clustered in the observation space [30]. We change the value of k (Kp and Ko from
2 to 20 with step 2) on the ORL, Yale face databases and the value of k (Kp and Ko from 5 to 50 with step 5) on the USPS
database.

Now, we test the recognition performances of each method on three databases, respectively. In these experiments, l
images (l varies from 2 to 6 on the ORL, Yale face database, and l varies from 20 to 60 on the USPS database) are randomly
selected from the image gallery of each individual to form the training sample set. The remaining images are used for testing.
For each l, we independently run 10 times.

For feature extraction, we used PCA, LDA, MMC, LPP, MFA, Wavelet + ICA + LDA, 2DPCA, 2DLDA, 2DMSD, 2DLPP, 2DLGEDA,
2DLGE/MMC and the proposed 2DMED algorithm, respectively. In the PCA phase of each method, we keep 90% image energy.
The maximal average recognition rate of each method and the corresponding dimension are given in Tables 4–6 when the l
samples per class are randomly selected for training and the remaining images for test, respectively. The maximal average
recognition rate is obtained by running 10 times averaging.

Figs. 8–10 showed the average recognition rates (%) of 2DPCA, 2DLDA, 2DLPP, 2DMSD, 2DLGEDA, 2DLGE/MMC and
2DMED versus the dimensions when the 2 images per person are randomly selected for training on the ORL, Yale face



Fig. 7. The maximal average recognition rates (%) of 2DMED versus the dimensions when the training set for training on the USPS database with varied a.

Table 3
The maximal average recognition rates (%) of 2DMED on the test set of three databases.

Method Database

ORL Yale USPS
l = 4 l = 5 l = 40

2DMED
%(dim) 96.30(56 � 2) 94.96(50 � 22) 89.85(16 � 4)

Table 4
The maximal average recognition rates (%) of each method on the ORL face database.

Method Number of training images

l = 2 l = 3 l = 4 l = 5 l = 6

PCA %(dim) 74.86(46) 82.27(46) 84.98(46) 86.71(46) 87.39(46)
LDA %(dim) 77.42(38) 85.09(38) 86.17(38) 87.23(38) 89.38(38)
MMC %(dim) 78.78(40) 85.44(40) 86.85(38) 88.32(38) 91.50(36)
LPP %(dim) 72.05(48) 81.78(46) 87.42(36) 90.82(34) 93.21(32)
MFA %(dim) 80.54(32) 83.56(36) 88.66(36) 91.52(46) 94.31(36)
Wavelet + ICA + LDA (3-level A sub-band) %(dim) 83.82(32) 86.94(32) 89.75(32) 92.32(42) 95.80(32)
2DPCA %(dim) 82.88(56 � 46) 86.79(56 � 44) 88.75(56 � 46) 89.68(56 � 44) 95.63(56 � 44)
2DLDA %(dim) 86.25(56 � 4) 89.39(56 � 2) 91.87(56 � 4) 92.98(56 � 4) 97.41(56 � 4)
2DMSD %(dim) 87.43(56 � 8) 88.21(56 � 8) 91.67(56 � 6) 94.00(56 � 6) 97.50(56 � 8)
2DLPP %(dim) 83.93(56 � 12) 87.78(56 � 14) 88.86(56 � 16) 91.35(56 � 16) 96.83(56 � 12)
2DLGEDA %(dim) 89.21 (56 � 2) 91.79 (56 � 4) 93.33(56 � 2) 94.00(56 � 4) 97.12(56 � 4)
2DLGE/MMC %(dim) 90.36 (56 � 10) 92.18 (56 � 14) 93.76(56 � 12) 94.58(56 � 14) 97.60(56 � 14)
2DMED %(dim) 92.50 (56 � 10) 93.21 (56 � 16) 94.17(56 � 4) 95.50(56 � 12) 98.75(56 � 8)

The bold values denote the best results.
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database and the 20 images per class are used for training on the USPS database, respectively. From three figures, it is ob-
served that the proposed method outperformed 2DPCA, 2DLDA, 2DMSD, 2DLPP, 2DLGEDA and 2DLGE/MMC methods.

In addition, the average CPU time consumed for training, test and classification, and the maximal average recognition
rates of the foregoing each method are given in Tables 7–9. 2DMED achieves its maximal average recognition rate, and it
needs less CPU time except 2DLGE/MMC when compared to other methods on three databases, respectively.

4.4. Overall observations and discussions

According to the experiments of three databases, we have several interesting observations:

(1) Different from PCA, LDA, Wavelet + ICA + LDA, MMC, 2DPCA, 2DLDA, and 2DMSD, 2DMED attempt to preserve the
local geometric structure, while the others aim to discover the global Euclidean structure. Manifold learning



Table 5
The maximal average recognition rates (%) of each method on the Yale face database.

Method Number of training images

l = 2 l = 3 l = 4 l = 5 l = 6

PCA %(dim) 78.49(29) 81.47(40) 85.37(36) 85.96(40) 87.01(46)
LDA %(dim) 81.93(14) 85.61(14) 88.30(14) 88.84(14) 89.36(14)
MMC %(dim) 81.29(21) 83.72(14) 86.99(14) 87.20(14) 88.29(14)
LPP %(dim) 81.45(22) 85.97(24) 88.57(21) 89.00(18) 90.40(21)
MFA %(dim) 83.87(12) 88.25(16) 89.48(18) 91.89(20) 92.95(24)
Wavelet + ICA + LDA (3-level A sub-band) %(dim) 85.95(14) 89.75(16) 91.90(16) 92.60(16) 94.15(12)
2DPCA %(dim) 88.67(50 � 36) 90.58(50 � 35) 91.05(50 � 35) 92.00(50 � 35) 93.73(50 � 35)
2DLDA %(dim) 88.37(50 � 15) 89.75(50 � 39) 93.14(50 � 20) 93.22(50 � 20) 94.67(50 � 3)
2DMSD %(dim) 89.57(50 � 32) 90.42 (50 � 30) 93.60(50 � 32) 93.95(50 � 32) 94.25(50 � 30)
2DLPP %(dim) 83.93(50 � 6) 86.00(50 � 4) 94.10(50 � 3) 93.11(50 � 11) 93.47(50 � 14)
2DLGEDA %(dim) 89.70(50 � 39) 91.61(50 � 38) 93.30(50 � 38) 93.96(50 � 38) 94.68(50 � 37)
2DLGE/MMC %(dim) 90.60(50 � 36) 92.08(50 � 36) 94.23(50 � 38) 94.49(50 � 37) 95.08(50 � 37)
2DMED %(dim) 91.20(50 � 25) 92.68(50 � 25) 93.84 (50 � 28) 95.49(50 � 25) 96.80 (50 � 28)

The bold values denote the best results.

Table 6
The maximal average recognition rates (%) of each on the USPS database.

Method Number of training images

l = 20 l = 30 l = 40 l = 50 l = 60

PCA %(dim) 80.88(20) 84.56(20) 86.72(29) 87.96(26) 88.90(27)
LDA %(dim) 82.72 (7) 85.83 (9) 86.80 (8) 88.00 (9) 88.57 (9)
MMC %(dim) 79.85(30) 83.74(27) 86.43(27) 87.88(27) 89.40(27)
LPP %(dim) 78.93(25) 82.75(14) 85.70 (29) 86.78(13) 88.82(17)
MFA %(dim) 80.54(32) 83.56(36) 86.66(36) 88.52(46) 89.31(36)
Wavelet + ICA + LDA (3-level A sub-band) %(dim) 81.12(36) 85.30(36) 86.80(38) 89.06 (36) 91.70(36)
2DPCA %(dim) 81.56(16 � 3) 85.41(16 � 3) 87.83(16 � 3) 88.82(16 � 4) 89.98(16 � 4)
2DLDA %(dim) 78.01(16 � 15) 81.80(16 � 14) 84.60(16 � 1) 86.04(16 � 1) 87.32(16 � 1)
2DMSD %(dim) 81.64 (16 � 2) 82.53 (16 � 4) 85.16(16 � 4) 87.95(16 � 5) 88.32(16 � 4)
2DLPP %(dim) 77.51(16 � 5) 79.66(16 � 4) 84.82(16 � 4) 86.86(16 � 5) 85.35(16 � 5)
2DLGEDA %(dim) 81.75(16 � 14) 83.93(16 � 15) 87.80(16 � 14) 88.96(16 � 14) 89.43(16 � 14)
2DLGE/MMC %(dim) 82.34(16 � 3) 85.93(16 � 3) 88.45(16 � 3) 89.80(16 � 3) 90.25(16 � 3)
2DMED %(dim) 83.30(16 � 4) 86.10(16 � 4) 89.36(16 � 4) 90.38(16 � 4) 91.82(16 � 4)

The bold values denote the best results.

Fig. 8. The average recognition rates (%) of 2DPCA, 2DLDA, 2DLPP, 2DMSD, 2DLGEDA, 2DLGE/MMC and 2DMED versus the dimensions when the 2 images
per person were randomly selected for training on the ORL face database. The dimension here is the number of eigenvectors.

M. Wan et al. / Information Sciences 274 (2014) 55–69 65



Fig. 9. The average recognition rates (%) of 2DPCA, 2DLDA, 2DLPP, 2DMSD, 2DLGEDA, 2DLGE/MMC and 2DMED versus the dimensions when the 2 images
per person were used for training on the Yale face database. The dimension here is the number of eigenvectors.

Fig. 10. The average recognition rates (%) of 2DPCA, 2DLDA, 2DLPP, 2DLGEDA, 2DLGE/MMC and 2DMED versus the dimensions when the 20 images per
class were used for training on the USPS database. The dimension here is the number of eigenvectors.
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algorithms based on local structure are superior to the methods based on global structure. In addition, the maximal
average recognition rates of 2DMED is significantly higher than that of other manifold learning algorithms, which
are shown in Tables 4–6.

(2) The average recognition rate (%) of 2DMED for a given number of dimensions is always higher than other six methods,
which are shown in Figs. 8–10. The proposed method preserves useful discriminant information. In Tables 7–9, com-
pared to other methods, 2DMED needs less CPU time for training, testing, and classification. It is only a little more on
CPU time consuming compared to 2DLGE/MMC. 2D methods directly extract image features from 2D image matrices
and thus the image matrices do not need to be transformed into vectors. 2DMED and 2DLGE/MMC avoid computing
inverse matrices, but 2DMED needs a few CPU time more than 2DLGE/MMC. It is because that 2DMED builds three
graphs.

(3) Our 2DMED method obtains the maximal average recognition rate in all the experimental cases, which shows that
2DMED is capable of handling SSS problem. The decent performance of the proposed method also demonstrates that
2DMED is more effective than other methods in extracting and representing facial features for face and USPS



Table 7
The average CPU time (s) consumed for training, test and classification, and the maximal average recognition rates (%)
when the 2 images per person were randomly selected for training on the ORL face database.

Methods Recognition rate (%) Dim CPU time (s)

PCA 74.86 (46) 0.281
LDA 77.42 (38) 0.360
LPP 78.78 (40) 0.350
MMC 72.05 (48) 0.316
MFA 80.54 (32) 0.289
Wavelet + ICA + LDA (3-level A sub-band) 83.82 (32) 0.330
2DPCA 82.88 (56 � 46) 0.265
2DLDA 86.25 (56 � 4) 0.258
2DMSD 87.43 (56 � 8) 0.244
2DLPP 83.93 (56 � 12) 0.250
2DLGEDA 89.21 (56 � 2) 0.255
2DLGE/MMC 90.36 (56 � 10) 0.224
2DMED 92.50 (56 � 12) 0.248

The bold values denote the best results.

Table 8
The average CPU time (s) consumed for training, test and classification, and the maximal average recognition rates (%)
when the 2 images per person were used for training on the Yale face database.

Methods Recognition rate (%) Dim CPU time (s)

PCA 78.49 (29) 0.155
LDA 81.93 (14) 0.151
LPP 81.45 (22) 0.152
MMC 81.29 (21) 0.140
MFA 83.87 (12) 0.0873
Wavelet + ICA + LDA (3-level A sub-band) 85.95 (14) 0.0930
2DPCA 88.67 (50 � 36) 0.0606
2DLDA 88.37 (50 � 15) 0.0589
2DMSD 89.57 (50 � 32) 0.0542
2DLPP 83.93 (50 � 6) 0.0592
2DLGEDA 89.70 (50 � 39) 0.0587
2DLGE/MMC 90.90 (50 � 36) 0.0559
2DMED 91.20 (50 � 25) 0.0565

The bold values denote the best results.

Table 9
The average CPU time (s) consumed for training, test and classification, and the maximal average recognition rates (%)
when the 20 images per class were used for training on the USPS database.

Methods Recognition rate (%) Dim CPU time (s)

PCA 80.88 (20) 1.542
LDA 82.72 (7) 1.504
LPP 78.93 (25) 1.478
MMC 79.85 (30) 1.014
MFA 80.54 (32) 0.723
Wavelet + ICA + LDA (3-level A sub-band) 81.12 (36) 0.816
2DPCA 81.56 (16 � 3) 0.610
2DLDA 78.01 (16 � 15) 0.598
2DMSD 81.75 (16 � 14) 0.505
2DLPP 77.51 (16 � 5) 0.587
2DLGEDA 81.75 (16 � 14) 0.601
2DLGE/MMC 82.34 (16 � 3) 0.548
2DMED 83.30 (16 � 4) 0.554

The bold values denote the best results.
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recognition over the variation of lighting, facial expressions, and pose. The reason may be that the proposed 2DMED
makes full use of the discriminant information and characteristic in the intra-class compactness graph, the margin
separability graph, and the inter-class separability graph, and is able to capture the geometrical structure of data
manifold.
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5. Conclusions

In this paper, we propose a novel method for feature extraction and recognition, namely the two-dimensional maximum
embedding difference (2DMED). It can directly extract the optimal projective vectors from 2D image matrices by simulta-
neously considering the graph characteristic of intra-class compactness, the margin separability and the inter-class separa-
bility combined with difference criterion techniques. Comprehensive comparison and extensive experiments show that
2DMED has the competitive performance against other algorithms such as PCA, LDA, MMC, LPP, MFA, Wavelet + ICA + LDA,
2DPCA, 2DLDA, 2DMSD, 2DLPP, 2DLGEDA and 2DLGE/MMC.
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