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ABSTRACT

In past decades, tremendous growths in the amount of text documents and images have become
omnipresent, and it is very important to group them into clusters upon desired. Recently, matrix
factorization based techniques, such as Non-negative Matrix Factorization (NMF) and Concept Factor-
ization (CF), have yielded impressive results for clustering. However, both of them effectively see only
the global Euclidean geometry, whereas the local manifold geometry is not fully considered. Recent
research has shown that not only the observed data are found to lie on a nonlinear low dimensional
manifold, namely data manifold, but also the features lie on a manifold, namely feature manifold. In this
paper, we propose a novel algorithm, called dual-graph regularized concept factorization for clustering
(GCF), which simultaneously considers the geometric structures of both the data manifold and the
feature manifold. As an extension of GCF, we extend that our proposed method can also be apply to the
negative dataset. Moreover, we develop the iterative updating optimization schemes for GCF, and
provide the convergence proof of our optimization scheme. Experimental results on TDT2 and Reuters
document datasets, COIL20 and PIE image datasets demonstrate the effectiveness of our proposed

method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is one of the most important research topics in both
machine learning and data mining communities. It arms at
partitioning the data into groups of similar objects. An enormous
number and variety of methods have been proposed over the past
several decades to solve clustering problems [1]. Generally, clus-
tering methods can be categorized as agglomerative and parti-
tional. Agglomerative clustering methods group the data points
into a hierarchical tree structure using bottom-up approaches. The
procedure starts by placing each data point into a distinct cluster
and then iteratively merges the two most similar clusters into one
parent cluster. On the other hand, data partitioning methods
decompose the data set into a given number of disjoint clusters
which are usually optimal in terms of some predefined criterion
functions [2]. Both of them have been well studied and investi-
gated in previous literatures [3,4].

In the last decade, matrix factorization based approaches have
attracted considerable attention for clustering. With regard to
these methods, each text document or image in the corpus is
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often treated as a data point in the high dimensional linear space.
Clustering analysis aims to look for similar data points and ensure
them within the same cluster in maximum degree. Intuitively,
similar samples are more likely to be grouped together than
different ones, and this could be attributed to the fact that
characteristics shared by similar ones in original data spaces are
inherited by new representations in lower dimensional spaces,
which makes the clustering more easily. There are particularly two
popular matrix factorization methods widely applied to clustering
analysis, i.e., Nonnegative Matrix Factorization (NMF) [5] and
Concept Factorization (CF) [2]. CF mainly strives to address the
limitations and meanwhile inherits all the strengths of NMF, such
as better semantic interpretation and easily derived clustering
results. In CF, each concept or component is modeled as a linear
combination of the data points while each data point consists of a
linear combination of the concepts. In general, CF is more
advantageous than NMF, because of its merits that it can be
applied to any data points taking both positive and negative
values. However, regardless of NMF or CF, they only consider using
the global Euclidean geometry to find new basis vectors, according
to how the new data representation is generated [6]. However,
many previous studies have shown human generated text data is
probably sampled from a submanifold of the ambient Euclidean
space [7-10]. In fact, the human generated text documents cannot
possibly “fill up” the high dimensional Euclidean space uniformly.
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Therefore, the intrinsic manifold structure needs to be considered
while learning new data representations [11]. Inspired by this,
Li et al. [12] proposed discriminative orthogonal nonnegative
matrix factorization (DON), in order to obtain a good data
representation that preserves both the local geometrical structure
and the global discriminating information. And also in order to
preserve the intrinsically geometrical structure and use the prior
knowledge, Li et al. [13] proposed locally constrained a-optimal
nonnegative projection (LCA). They are all NMF-based methods.

Recently, Cai et al. [11] proposed locally consistent concept
factorization (LCCF) based on CF to extract the underlying concepts
which are consistent with the low dimensional manifold structure.
The obtained concepts can well capture the intrinsic geometrical
structure and the documents associated with similar concepts can
be well clustered. However, the method mentioned above focuses
on one-sided clustering, i.e., clustering the data based on the
similarities along the feature. Considering the duality between
data points and features, several co-clustering algorithms have
been proposed and shown to be superior to traditional one-sided
clustering [14-20]. Gu et al. [19] proposed a Dual Regularized
Co-Clustering (DRCC) method based on semi-nonnegative matrix
tri-factorization. In order to discover an appropriate intrinsic
manifold, Li et al. [20] proposed realtional multimanifold co-cluste-
ring based on symmetric nonnegative matrix tri-factorization.
Based on NMF, Shang et al. [17] proposed Graph Dual Regularization
Non-negative Matrix Factorization (DNMF) for co-clustering, which
achieves an encouraging performance.

Motivated by recent progress in dual regularization [17-20]
and concept factorization [2,11], we propose a novel algorithm
called dual-graph regularized concept factorization for clustering
(GCF), which simultaneously considers the geometric structures of
the data manifold as well as the feature manifold. We encode the
geometric structure information of data and feature spaces by
constructing two nearest neighbor graphs, respectively. Our pro-
posed algorithm GCF is based on the CF, it can be optimized by
iterative multiplicative updating schemes, and their convergence
proof is been provided. To summarize, the main contributions of
this work include:

1. We propose a novel dual-graph regularized concept factoriza-
tion (GCF) algorithm which simultaneously considers the geo-
metric structure information contained in data points as well as
features.

2. We develop iterative multiplicative updating optimization
schemes to solve our proposed algorithm GCF, and provide
the convergence proof of the optimization scheme.

The remainder of this paper is organized as follows: Section 2
presents a brief overview of some related works. A novel GCF
algorithm is proposed in Section 3. As an extension of GCF, the
algorithm for negative data is described in Section 4. Experimental
results on many real-world datasets are presented in Section 5.
Section 6 is conclusions.

2. Related works

In this section, we briefly review some related works to our
research work.

2.1. NMF

Consider a data matrix X = [X1, ..., Xy] € R"*", each column of X

is a sample vector. NMF aims to decompose X into two low rank
nonnegative matrices, basis matrix U= [uy]eR"*¥ and feature

matrix V = [vj] € RV, such that X~ UV’, where K < min {M,N}.
Therefore, the objective optimization problem of NMF can be
concluded as follows:

min JavE=1X=UVT |2 st UV=0 M

Several methods have been proposed to find a solution to this
nonlinear optimization problem. The multiplicative updates rules
were first investigated by Lee and Seung [21] as follows:
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Theorem 1. [21] for X, U,V > 0, the objective function Jyug in Eq. (1)
is nonincreasing under each of the above multiplicative updating
rules stated in Eq. (2).

The nonnegative constraints on U and V require the combina-
tion coefficients among different basis can only be positive. This is
the most significant difference between NMF and other matrix
factorization methods, e.g., SVD. Unlike SVD, no subtractions can
occur in NMF. For this reason, it is believed that NMF can learn a
parts-based representation have been observed in many real
world problems such as face analysis, document clustering.

2.2. DRCC

Gu et al. [19] proposed a dual regularized co-clustering (DRCC)
method based on graph regularized (semi-)NMF, which imposes
graph regularization on both the data points and features cluster
assignment matrices. The objective optimization problem can be
concluded as follows:

min : Joree = X~ USV' || +2Tr(V' LyV) +#Tr(U"LyU)
st. UV>0 3

where 1, > 0 are the regularization parameters, and S is a matrix

whose entries can take any signs. Ly =DV—WV is the graph
Laplacian of the data graph which reflects the label smoothness

of the data points, where WY is the weight matrix and DV is a
diagonal matrix whose entries are column sums of WV.

Ly =DY—-WV is the graph Laplacian of the feature graph which
reflects the label smoothness of the feature. The multiplicative
updating rules minimizing Eq. (3) are given as [19].

s=u"u) - u'xXvv'v) 1,

v IW'V+A* +VB™
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EWYU+P*T +UQ |
Uik < Uik

4
wDYU+P~ +UQ * “

where A=X"US=A"-A", B=STU'US=B* —-B~, P=XVS' =
P*—P~ and Q=SV'VS'=Q*" —Q~, where A =(Al+Ay/2,
Aj = (IAjl—Ay)/2

Theorem 2. [19] For U,V > 0, the objective function Jpgcc in Eq. (3) is
non-increasing under each of the above updating rules stated in Eq. (4).

Gu et al. [19] have proved that the iterative multiplicative
updating scheme stated in Eq. (4) will find local minima of the
objective function Jpgec-
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23. CF

NMF can only be performed in the original feature space of the
data points. In the case that the data are highly non-linear
distributed, it is desirable that we can kernelize NMF and apply
the powerful idea of the kernel method [11]. To achieve this goal,
Xu and Gong [2] proposed an extension of NMF which is called
Concept Factorization (CF). Therefore, the objective optimization
problem of CF can be concluded as follows:

nV&i‘;l:jCanx—xvan,% st. W,V>0 (5)

The multiplicative updates rules were given [2] as follows:
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where K= X"X. These multiplicative updating rules only involve
the inner product of x and thus CF can be easily kernelized.

Theorem 3. [2] For X, W,V > 0, the objective function J¢g in Eq. (5) is
nonincreasing under each of the above multiplicative updating rules
stated in Eq. (6).

With extensive experimental results, Xu and Gong [2] show the
superiority of CF over NMF for document clustering.

2.4. LCCF

Cai et al. [11] proposed a locally consistent concept factoriza-
tion (LCCF) to find concepts with respect to the intrinsic local
manifold geometry structure. The objective optimization problem
of LCCF can be concluded as follows:

nm}i‘?: Jicee = IIX=XWVT |2 2Tr(VILV) st. W,V=0 7

where 1>0 is the regularization parameter. Please see [11] for
details. The multiplicative updates rules were given [11] as follows:

(KV)ji (KW +28V);,

W< W< 77 v. S —
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Theorem 4. [11] For X, W,V >0, the objective function Jiccg in
Eq. (7) is nonincreasing under each of the above multiplicative
updating rules stated in Eq. (8).

Cai et al. [11] have proved that the iterative multiplicative
updating scheme stated in Eq. (8) will find local minima of the
objective function Jjccg-

3. Graph dual regularization concept factorization (GCF)

In this section, we first propose a novel dual-graph regularized
concept factorization (GCF) algorithm, which simultaneously con-
siders the geometric structures of both the data manifold and the
feature manifold. Then we present an optimization scheme based
on the iterative updating rules of two factor matrices to solve its
objective function. Finally, we present the convergence proof of
our iterative updating scheme.

3.1. Data and feature graphs

A natural treatment for the data sampled from a manifold is to
construct a graph to discretely approximate the manifold, whose
vertices correspond to the data samples, while the edge weight
represents the affinity between the data points. One common
assumption about the affinity between data points is cluster
assumption, which says if two samples are close to each other in
the input space, then their labels (or embeddings) are also close to

each other [19,20]. Furthermore, recently literatures [17,19,20]
shows that not only the observed data are found to lie on a
nonlinear low dimensional manifold, namely data manifold, but
also from the dual view, the features are discrete samplings from
another manifold, namely feature manifold. As a result, we
introduce two graphs to explore the geometric structures of both
the data manifold and the feature manifold, respectively. In other
words, we construct two graphs: data graph and feature graph to
effectively model the geometric structures of both the data
manifold and the feature manifold.

We first construct a p nearest neighbor data graph whose
vertices correspond to {Xq,...,Xy}. And we use the 0-1 weighting
scheme for constructing the p nearest neighbor graph as in [3,19],
and define the data weight matrix as follows:

1,
8= { 0.

where Nj(x;) represents the set of p nearest neighbors of x;. The

if X5 e Np(X;); .
otherwise, 5= 1N

graph Laplacian of the data graph is defined as Ly = DY — SV, where
DV is a diagonal degree matrix whose entries are given by
(D)= X ("

And we can also use the 0-1 weighting scheme for constructing

a p nearest neighbor feature graph whose vertices correspond to
{xI,...,xI;}, and define the feature weight matrix as follows:

1, if X' e N,(x");
(s“)js:{ s <N

,s=1,...M
0, otherwise. J

The graph Laplacian of the feature graph is also defined as
Ly=DY-sY.

3.2. Objective function of GCF

Based on the graphs regularizers of both data manifold and
feature manifold, we propose a novel dual-graph regularized
concept factorization (GCF). By defining the original data point
x! on to the low-dimensional space U e R**¥, the discrete approx-
imation function of the smoothness can be computed as
UTLyU e RX, where U equals XW for LCCF.

GCF aims to find the nonnegative matrices W e RVX, v e RF*V,
which minimize the following objective function:

min : Jocr = [X —XWVT|2 £ ATr(VILyV) + 4 Tr(WTLwW)  st. W,V>0

C))
where Ly = X'LyX = X"V -S")X=DW —SW. The 1> 0,4 >0 are
the regularization parameters, which balance the reconstruction
error of GCF in the first term and graph regularizations in the
second and third terms. When letting x =0, GCF degenerates to
the LCCF method in Eq. (7), and when letting A=u =0, GCF
degenerates to the CF in Eq. (5).

3.3. A multiplicative algorithm

The objective function Jicz of GCF in Eq. (9) is not convex in
both W and V together. Therefore, it is unrealistic to expect an
algorithm to find the global minimum of J¢c. In the following, we
introduce an iterative algorithm which can achieve a local mini-
mum. Define K=X"X, the objective function in Eq. (9) can be
rewritten as:

cck = TI(X = XWVHT(X — XWVT)] + ATr(VT Ly V) + 4 Tr(WT Ly W)
= Tr[I— WVHTKI - WVT)] + ATr(VT Ly V) + 4 Tr(WTLyw W)
= Tr(K) — 2Tr(VWTK) + Tr(VWTKWVT)
+ATr(VI Ly V) + 4 Tr(W Ly W) (10)
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Let W=[yj;] and ®=[py] be the Lagrange multiplier for
constraints W>0 and V>0, respectively. Then the Lagrange
function L is

L = Tr(K) — 2Tr(VWTK) + Tr(VWTKWVT)
+ ATr(V Ly V) + 4 Tr(WT Ly W) + Tr(PWT) + Tr(®V) (11)
The partial derivatives of L with respect to W and V are
JL

W= — 2KV + 2KWVTV + 2uLwW + P,
:TL/ = —2KW+2VWTKW + 2Ly V + @

Using the KKT conditions yjw; =0 and ¢y, =0, we get the
following equations:

(—KV+KWV'V Ly W) wi =0, (— KW + VW KW 4 2Ly V);, v = 0
(—KV+KWV'V+ D" W — 1S" W) wj, = 0,
(— KW + VWKW + D"V — 38" V); v = 0

The above equations lead to the following updating rules:

KV +4S"VW),
whE T e wh - e (12)
(KWV'V + D" W);,
Vv
o (KW+28"V), a3

sk K VWKW + DV,

3.4. Convergence analysis

In the following, we will investigate the convergence of the
updating rules in Egs. (12) and (13). And regarding these two
updating rules, we have the following theorem:

Theorem 5. For X, W>0, V>0, the objective function Jgc in
Eq. (9) is nonincreasing under each of the above multiplicative
updating rules stated in Eqgs. (12) and (13).

Please see Appendix A for a detailed proof. Recent studies
[22,23] have shown that the alternate updating rules in Eq. (2) do
not guarantee the convergence to a stationary point. But a slight
modification proposed in [23,24] achieves this property. Our
alternate updating rules in Egs. (12) and (13) are essentially similar
to the updating rules for LCCF, so the minor modification can also
be applied.

For the objective function of GCF, it is easy to check that if W
and V are the solution, then, WD, VD~ will also form a solution
for any positive diagonal matrix D. To eliminate this uncertainty, in
practice people will further require that wTKw = 1, where w is the
column vector of W. The matrix V will be adjusted accordingly so

that WVT does not change. This can be achieved by
V < V[diagWTKW)]'/2, W « W[diag(WTKW)]~ /2

Our GCF method also adopts this strategy.
3.5. Connection with gradient descent method
Intuitively, the objective function of GCF in Eq. (9) can be

minimized by gradient descent algorithm. Using gradient descent
method, the additive update rules for Eq. (9) problem are

ccr Vecr
Wik < Wi+~ ==, Vji < Vig+ i
J J JK aij J J J ank

where 5, and &, are the parameters to control the step size of
gradient descent. As long as they are sufficiently small, the updates

should reduce Jgcg. We set
_ Wik Sp = — Vik
2(KWV'V +DYW),” 2(VW'KW + D" V);,

Njk =

Then we can obtain

) - (KV +4S" W),
Wik iy~ = Wik T WA,
jie (KWV'V+ D" W),
9 (KW +S"V),
Vi + S Jocr ) ik

P N ) . S—
Vi (VWKW -+ D"V,

And we can see that the multiplicative updating rules are the
special cases of gradient descent with automatically step size
parameter selection. The advantage of multiplicative updating
rules is the guarantee the nonnegativity of W and V. Theorem 5
also guarantees the multiplicative updating rules in Eqgs. (12) and (13)
converge to a local optimum.

3.6. Computational complexity analysis

In this subsection, we discuss the computational cost of
our proposed algorithm comparing to standard NMF, CF, DRCC
and LCCF. Suppose the multiplicative updates stops after t itera-
tions, the overall cost for NMF is O(tMNK). The overall cost for CF,
DRCC and LCCF is O(tN?K+N*M), O(N*M+NM?+tMNK) and
O(N*M +tN?K), respectively. For our proposed method, the same
p nearest neighbor graph needs O(N>M +NM?) to construct. Since
two weigh matrices " and S" of our proposed method are sparse,
based on the updating rules of our proposed algorithm, the cost of
two iterative multiplicative updating procedures is O(tN?K). The
overall cost for our proposed method is O(N*M +NM? +tN?K).

4. The algorithm for negative data matrices

The algorithm we introduced in Section 3.3 only works when
the K is nonnegative. In the case that the data matrix has negative
values, it is possible that the K has negative entries. In this section,
we will introduce a general algorithm which can be applied for any
case. Our approach follows [2], which is essentially based on the
following theorem proposed by Sha et al. [11,25].

Theorem 6. Define the non-negative general quadratic form as

f(v) :% TAv+bTy (14)
where v is an m dimensional nonnegative vector, A is a symmetric
positive definite matrix and b is an arbitrary m dimensional vector.
Let A=A" —A~, where A" and A~ are two symmetric matrices
whose elements are all positive. Then the solution v that mini-
mizes f(v) can be obtained through the following iterative update

—bi+/b? +4A T v (A V),
Vi‘_vi|: + 1+ ( V)( V) (15)

2(A+ V)l'

From the Eq. (10), we can easily see that the objective function
Jocr of GCF is a quadratic form of W (or V) only and Theorem 6 can
naturally be applied. We only need to identify the corresponding A
and b in the objective function.

Fixing V, the part b for the quadratic form Jgcz(W) can be
obtained by taking the first order derivative with respect to W at
W=0

Alecr

= (— T . —(— .
= WZO_( 2KV + 2KWV'V+ 4Ly Wy = (=2KV),

(16)
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The part A for the quadratic from J;cz(W) can be obtained by
taking the second order derivative with respect to W

PJece T
W =2(K);(V' V) + 2pSi(Lw )ji 17)
1, if I=k;
where &), = 0 else - Let K=K" —K~, where K" and K~

are two symmetric matrices whose elements are all positive.
Substituting A and b in Eq. (15) using Eqs. (16) and (17),
respectively, we obtain the multiplicative updating equation for
each element wj of W

(KV)ji+/(KV)jf +4P; Py as)

2P;;

Wik < Wik {

where P* = K*WV'V+ DWW and P~ =K~ WV'V+,SVW.

Similarly, we can get the updating equation for each element vj,
in V by applying Theorem 6 to the quadratic from Jgce(V). Fixing
W, we get

ecr
an k

Jocr T
= (—2KW); = 26;( W' KW 2 Ly);
o ( Dikes FTT 3ij( i+ 2201k (Ly)ji

The updating equation for V is

(KW) -+ /(KW)j, +4Q Qi 19)

Vi < Vik
Jk J +
{ 2Qy

where Q © = VWTK*W+ D"V and Q - = VWK~ W +S"V.

5. Experimental results

In this section, we investigate the use of our proposed GCF
algorithm for data clustering. To examine the performance of GCF,
we compare it with several stat-of-the-art clustering algorithms
on document and image corpora. First, we give the descriptions of
the datasets and evaluation metrics. Then the performance com-
parisons and results analysis are presented.

5.1. Data corpora

Our empirical studies on clustering were accomplished on
different kinds of datasets: two real world document corpora
(i.e.,, TDT2 and Reuters) and two images databases (i.e., COIL20
and PIE). The statistics of them are summarized in Table 1.
In particular, the documents in both of TDT2 and Reuters have
been manually clustered based on their topics, which are ideal for
examining the clustering performance. Detailed descriptions about
the four datasets are shown as follows.

® TDT2: This corpus is comprised of 11,201 on-topic documents
with 96 semantic topics. It collects various documents mainly
from six predominant news agencies, including two radio
programs (VOA and PRI), two television programs (CNN and
ABC), and two newswires (APW and NYT). We remove the stop
words and delete the terms that appear too few times for the
whole corpus [11] (e.g., the terms covered in less than ten
documents). Those documents containing multiple topics are
eliminated, and the topics with more than or equal to ten
documents are kept, thus in total leaving us with 10,021
documents that can be grouped into 56 clusters.

® Reuters: This corpus contains 21,578 documents which are
grouped into 135 clusters. Compared with TDT2 corpus, the
Reuters corpus is more difficult for clustering. In TDT2, each
document has a unique category label, and the content of each

Table 1
Statistics of the datasets.

Datasets Domain Instances Features Classes
TDT2 Document 10,021 36,771 56
Reuters Document 8,213 18,933 41
COIL20 Image 1,440 1,024 20
PIE Image 11,554 1,024 68

cluster is narrowly defined, whereas in Reuters, many docu-
ments have multiple category labels, and documents in each
cluster have a broader variety of content. In our test, we
discarded documents with multiple category labels, and only
select the categories with more than 10 documents. This lefts
us with 8213 documents in total [11].
In both of the two document corpora, the stop words are
removed and each document is treated as a term-frequency
vector in the term-space.

® COIL20: The COIL20 database is composed of 20 subjects with
1440 images altogether. And each subject has 72 images. All the
images are scaled to 32 x 32 pixel, and the images of each
subjects were taken 5 degrees apart as the subject is rotated on
a turntable, thus each image is represented by a 1024 dimen-
sional feature vector.

® PIE: The CMU-PIE database is composed of 68 subjects with
41,368 face images altogether. Original images are normalized
in scale and orientation to make the two eyes be aligned at the
same position. The size of each cropped image is 32 x 32, with
256 Gy levels per pixel. Each person is under 13 different poses,
43 different illumination conditions, and with four different
expressions. In our test, we fixed the pose and expression and
then have 11,554 images under different lighting conditions.

5.2. Evaluation metrics

To examine the clustering performance of our method, we
choose two popular evaluation metrics: the accuracy (AC) and the
normalized mutual information (NMI) [2]. Usually, the clustering
result is evaluated by comparing the gained cluster label of each
document with its ground truth label. Given a document x;, let r;
and s; be the obtained cluster label and the label provided by the
corpus in respective, and then AC is defined as

n
.Zl (s, map(ry))
1=
AC= N (20)
where N is the total number of documents, and &(x,y) is the
function that equals 1 when x =Yy and is O otherwise. map(r;) is a
mapping function which maps each cluster label to an equivalent
given label. The Kuhn-Munkres algorithm [27] is used for the best
mapping. The greater the accuracy, the better the clustering
quality.
For NM]J, let C and C’ denote the sets of clusters from the ground
truth and the algorithms respectively, then the mutual informa-
tion between them is expressed by

p(ci, ¢)

MI(C,C) = p(ci) x p(c))

> plci,cj) x log, (21)

cie chf eC

where the probabilities p(c;), p(c) denote that to what extent a
document arbitrarily selected from the corpus belongs to the
clusters ¢; and Cj» respectively. And p(ci.c)) is the joint probability
that the arbitrarily chosen document belongs to the cluster ¢; and
¢ at the same time. To simplify comparisons among different
cluster sets, we use the normalized mutual information (NMI),



J. Ye, Z. Jin / Neurocomputing 138 (2014) 120-130 125

Table 2

Clustering accuracy result on TDT2 corpus.
k 2 3 4 5 6 7 8 9 10 Avg.
KM 91.83 84.23 89.43 77.68 76.32 73.82 71.58 70.87 7013 78.43
NMF 85.69 79.51 76.58 69.34 71.43 69.12 66.80 67.23 66.48 72.46
CF 86.13 79.67 78.29 73.63 74.82 70.53 67.04 67.35 68.65 74.06
DRCC 95.54 89.21 86.83 83.07 83.76 79.45 74.56 7213 70.57 81.68
LCCF 94.23 88.53 86.65 83.41 81.26 79.12 74.28 75.18 69.24 81.32
GCF 96.21 91.04 89.45 87.66 84.61 80.39 75.20 73.28 71.86 83.30
KMncw 93.28 85.32 91.24 84.39 83.67 83.12 82.23 80.14 77.78 84.57
NMFncw 98.43 95.91 95.05 87.73 91.03 87.72 89.24 88.74 89.02 91.43
CFnew 98.34 96.64 96.01 89.27 92.32 89.46 87.24 87.84 86.64 91.53
DRCCnew 98.69 97.52 97.10 96.35 97.31 94.54 95.38 94.15 95.37 96.27
LCCFnew 98.47 97.49 97.67 97.38 97.02 96.47 96.01 96.95 95.74 97.02
GCFnew 99.12 97.63 98.51 98.40 98.11 97.94 97.36 97.71 96.25 97.89

Table 3

Clustering normalized mutual information result on TDT2 corpus.
k 2 3 4 5 6 7 8 9 10 Avg.
KM 80.28 76.65 79.71 70.39 73.62 72.83 71.29 71.83 70.67 74.14
NMF 65.72 63.68 68.70 62.35 67.51 65.87 67.89 67.73 66.96 66.27
CF 67.28 68.91 69.78 64.65 67.86 66.54 68.31 69.43 69.81 68.06
DRCC 84.67 78.33 78.71 73.53 75.25 71.40 72.23 71.76 70.47 75.15
LCCF 84.18 78.23 77.58 72.04 74.86 73.32 69.73 70.42 69.59 7443
GCF 85.94 81.33 80.64 76.56 77.41 75.17 72.58 72.20 71.85 77.08
KMncw 93.12 82.24 84.56 79.39 75.41 74.78 77.54 75.49 74.63 79.68
NMFnew 90.56 88.12 91.36 84.43 87.71 83.62 85.47 83.64 82.28 86.35
CFnew 92.97 87.53 90.34 82.72 85.86 81.97 84.54 83.65 81.39 85.66
DRCCnew 94.56 93.85 94.03 91.34 92.43 90.16 92.51 92.03 91.28 92.47
LCCFnew 94.10 93.87 93.82 90.65 93.27 92.78 93.14 93.25 92.46 93.04
GCFnew 95.82 94.25 94.14 92.36 94.45 93.68 93.50 93.73 93.32 93.92

Table 4

Clustering accuracy result on Reuter corpus.
k 2 3 4 5 6 7 8 9 10 Avg.
KM 81.54 70.26 64.35 59.87 59.29 55.46 47.58 4517 46.32 58.87
NMF 83.15 72.34 69.27 59.32 58.76 54.85 46.87 45.78 47.40 59.75
CF 83.34 72.59 70.34 61.64 61.74 55.92 47.21 46.26 49.37 60.93
DRCC 86.31 77.94 76.42 70.30 68.17 62.71 58.65 56.14 57.53 68.24
LCCF 85.28 76.62 76.18 71.35 67.95 61.47 59.98 57.31 58.86 68.33
GCF 87.36 78.97 78.43 72.16 68.45 63.21 61.79 58.32 59.11 69.76
KMncw 88.74 83.87 79.52 71.47 71.35 64.58 59.22 57.83 58.16 70.53
NMFnew 88.84 83.65 78.76 74.34 72.61 68.58 61.21 59.14 61.37 72.06
CFnew 88.78 84.52 79.87 74.40 72.83 69.84 63.45 61.74 60.45 72.88
DRCCnew 89.03 84.86 79.94 75.25 74.10 72.52 69.16 65.30 66.41 75.17
LCCFnew 88.82 84.76 81.13 76.07 76.68 74.86 71.58 71.06 65.74 76.74
GCFnew 89.77 85.40 81.91 78.26 79.04 7719 74.53 73.78 67.37 78.58

Table 5

Clustering normalized mutual information result on Reuter corpus.
k 2 3 4 5 6 7 8 9 10 Avg.
KM 42.53 41.39 46.47 43.16 48.62 46.76 39.84 39.83 46.58 43.91
NMF 43.67 42.10 48.37 43.24 48.76 45.27 38.24 39.74 45.93 43.92
CF 44.20 42.36 51.61 43.57 49.64 46.71 38.73 40.26 46.83 44.88
DRCC 49.87 47.73 53.80 48.14 51.64 48.15 43.07 44.36 48.79 48.39
LCCF 50.16 46.34 54.47 49.25 51.96 49.38 46.48 45.83 50.43 49.37
GCF 52.28 48.30 58.51 52.02 53.50 53.02 49.34 46.49 51.78 51.69
KMncw 62.57 64.20 65.15 53.27 57.68 53.16 45.76 45.62 53.30 55.63
NMFnew 61.28 64.45 63.57 55.24 57.96 55.61 46.51 46.96 54.62 56.24
CFnew 61.21 64.87 63.78 56.12 58.87 55.98 47.24 47.43 54.35 56.65
DRCCnew 58.88 64.43 63.52 56.46 59.71 57.07 53.15 52.87 55.44 57.95
LCCFnew 60.23 65.42 65.78 57.85 63.15 61.40 55.27 53.29 56.67 59.89
GCFnew 61.35 67.28 67.80 59.21 65.56 62.85 56.49 54.31 57.89 61.42
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Table 6
Clustering accuracy result on COIL20 dataset.

k 2 3 4 5 6 7 8 9 10 Avg.
KM 92.71 79.35 73.19 71.67 67.78 68.34 66.13 66.23 64.60 72.22
NMF 89.84 77.80 73.01 70.36 65.20 64.64 65.16 64.87 65.37 70.69
CF 89.72 79.34 73.04 7133 75.21 63.85 64.64 62.86 62.15 71.34
DRCC 91.04 83.42 80.36 75.15 77.74 70.13 71.67 67.42 68.97 76.21
LCCF 90.74 84.22 78.14 74.46 79.59 70.08 71.64 67.87 65.71 75.82
GCF 92.48 85.36 82.69 79.23 82.90 73.62 75.51 70.02 68.44 78.91
KMnew 91.65 78.28 7411 70.49 66.42 65.95 66.07 62.33 64.82 7112
NMFnew 89.61 76.60 72.30 72.21 66.37 68.25 68.15 66.78 66.59 71.87
CFnew 88.39 81.51 75.97 72.48 76.74 65.33 64.26 64.35 61.12 72.24
DRCCnew 90.32 84.21 81.76 76.45 78.84 73.38 72.65 69.27 70.54 77.49
LCCFnew 89.90 84.53 81.12 75.60 81.63 72.66 71.45 69.91 67.20 77.11
GCFnew 91.67 86.55 83.89 80.15 85.31 77.09 74.78 73.10 7217 80.52
Table 7

Clustering normalized mutual information result on COIL20 dataset.

k 2 3 4 5 6 7 8 9 10 Avg.

KM 79.64 66.11 67.56 68.95 71.51 7217 71.32 72.39 70.57 7113
NMF 71.25 63.42 67.87 66.07 68.34 70.14 70.40 71.65 71.89 69.00
CF 7113 63.21 66.38 67.67 65.33 66.67 67.28 66.40 66.27 66.70
DRCC 77.29 74.57 75.14 72.26 72.86 73.42 73.89 70.38 69.40 73.25
LCCF 74.51 68.69 70.63 72.22 68.81 70.57 70.67 69.86 68.69 70.52
GCF 80.40 76.35 7743 78.56 74.89 75.31 76.45 72711 70.63 75.86
KMncew 77.27 65.46 66.41 65.85 66.28 65.75 67.15 66.23 68.24 67.63
NMFnew 70.85 62.62 66.23 70.03 67.56 70.48 71.85 71.89 71.24 69.19
CFnew 67.63 64.35 63.77 65.28 65.09 67.72 69.20 68.39 67.13 66.51
DRCCnew 76.92 74.28 73.57 76.86 72.67 74.63 75.49 73.64 71.32 74.38
LCCFnew 73.46 71.25 69.82 73.88 70.61 72.35 73.58 72.31 70.37 71.95
GCFnew 78.58 76.35 75.77 78.01 73.53 75.90 77.02 7419 7248 75.76

Table 8

Clustering accuracy result on PIE dataset.

k 2 3 4 5 6 7 8 9 10 Avg.

KM 61.34 48.57 49.76 44.96 44.58 45,16 45.90 42.74 4325 47.36
NMF 56.24 53.37 54.53 52.38 51.59 52.96 53.50 51.16 51.83 53.06
CF 57.23 58.14 58.36 58.89 57.63 57.80 55.97 57.26 56.85 57.57
DRCC 66.38 63.40 65.65 62.04 61.67 64.50 63.79 61.71 62.15 63.48
LCCF 62.89 58.42 60.12 60.61 59.01 59.36 56.12 57.45 57.07 59.01
GCF 67.14 69.25 71.71 72.86 69.67 70.27 64.03 65.39 64.10 68.27
KMnew 62.76 53.24 51.78 45.68 43,16 46.38 42.28 44,03 42.34 47.96
NMFncw 59.85 56.61 57.18 54.89 52.50 53.64 55.90 54.38 54.67 55.51
CFnew 59.06 58.74 58.30 58.57 57.21 57.24 55.19 54.53 51.25 56.68
DRCCnew 72.36 68.53 69.56 65.20 64.13 63.40 64.47 62.81 64.29 66.08
LCCFnew 60.86 59.81 59.23 61.42 60.21 61.57 58.23 60.95 60.14 60.27
GCFnew 77.06 70.74 71.29 74.88 72.60 73.75 68.75 69.80 67.52 71.82

Table 9

Clustering normalized mutual information result on PIE dataset.

k 2 3 4 5 6 7 8 9 10 Avg.
KM 17.64 26.78 33.63 35.87 41.25 46.74 49.27 50.86 51.27 39.26
NMF 27.57 29.96 28.36 32.84 34.21 35.68 37.78 34.54 34.83 32.86
CF 21.27 37.14 47.62 51.86 56.68 59.37 60.72 63.61 65.38 51.52
DRCC 37.23 44.08 44.79 51.54 56.57 64.40 65.15 63.31 64.24 54.59
LCCF 30.62 40.53 51.50 54.45 57.06 61.11 62.61 64.83 67.40 54.46
GCF 38.41 48.36 54.75 58.39 62.94 67.66 67.20 70.24 75.62 60.39
KMnew 19.14 30.87 41.65 38.73 43.96 50.59 49.90 52.63 53.14 42.29
NMFnew 30.47 32.56 31.12 38.98 4514 50.78 55.69 55.13 56.24 44.01
CFnew 18.83 34.67 47.48 52.46 58.16 60.35 61.19 62.86 63.98 51.11
DRCCnew 38.13 44.67 44.42 51.85 59.67 63.67 67.23 64.87 65.50 55.56
LCCFnew 31.24 38.37 52.19 55.07 58.46 60.86 61.53 63.49 65.77 54.11

GCFnew 42.94 46.52 55.81 57.39 65.73 70.38 71.08 7312 77.64 62.29
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which is formulated as follows: ® Nonnegative Matrix Factorization based clustering (NMF in
/ MI(C,C) short) [28].
NMI(C,C)=———— < (22) ® Concept Factorization based clustering (CF in short) [2].
max (H(C), H(C")) . . .
® Dual regularized co-clustering method based on semi-
where H(C) and H(C') denote the entropies of C and C, respec- nonnegative matrix tri-factorization (DRCC in short) [19].
tively. The normalized value varies between 0 and 1. The greater ® [ocally Consistent Concept Factorization based clustering (LCCF
the NMI, the better the clustering quality. in short) [11].
® Qur proposed Dual-graph regularized Concept Factorization
5.3. Performance evaluations and comparisons (GCF in short).
To show the data clustering performance, we compare our
algorithm with other related methods on four datasets. The In addition to the original form of all the above algorithms, we
algorithms that we evaluated are listed below: also implement the normalized-cut weighted form (NCW) sug-
gested by [2,11,28]. When the data set is unbalanced, the NCW
® Traditional k-means clustering method (KM in short). weighting can automatically reweight the samples which lead to
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Fig. 1. The performance of our proposed algorithm varies with the size of neighborhood.
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better clustering performance [2,11,28]. Using the original data
matrix X to conduct document clustering can be considered as the
original form. And using the weighted data matrix X' =XD~ /2,
where D =diag(X"Xe) to conduct document clustering can be
considered as the NC weighted variation. The weighted form of
GCF is derived in Appendix B. Essentially, we have compared six
approaches (KM, NMF, CF, DRCC, LCCF, and GCF) and their NCW
versions in the experiment. For the algorithms to which the kernel
trick can be applied (i.e, KM, CF, LCCF, GCF and their NCW
versions), we also implement their kernelized versions with
degree 2 polynomial kernel following the literature [11].

The evaluations were conducted for the cluster numbers
ranging from 2 to 10. For each given cluster number k, 20 test
runs were conducted on different randomly chosen clusters from
the corpus, the final performance scores were obtained by aver-
aging the scores from the 20 test runs in Tables 2-9 for the TDT2,
Reuter, COIL20 and PIE datasets, respectively.

We set the two parameters in the method of LCCF following the
literature [11]. And in the DRCC and GCF methods, each method
has three parameters: the number of nearest neighbors p and the
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regularization parameters 1 and x. Throughout our experiments,
we empirically set the number of nearest neighbors p to 5.
Furthermore, the regularization parameter A is also set to be the
same value as the regularization parameter x for simplicity, and
the value of the regularization parameter is set to 100. From the
results shown in Tables 2-9, we can observe the following:

® DRCC, LCCF and our proposed method GCF consider the
geometrical structure information contained in the data and
commonly achieve good performance. This suggests that the
underlying manifold structure of the data is useful in data
clustering. Also, co-clustering the features and data points
together, the clustering of features can lead to improvement
in the clustering of data points in the method of DRCC and GCF.
Our proposed method GCF can achieve better clustering per-
formance than DRCC. The reason for this can be explained that
GCF method is based on CF which mainly strives to address the
limitations and meanwhile inherits all the strengths of the
NMF-based method, such as better semantic interpretation and
easily derived clustering results.
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Fig. 2. The performance of our proposed algorithm varies with the regularization parameters.
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® Regardless of the data, we can see that GCFycw always has the
best performance. This shows that by simultaneously consider-
ing the intrinsic geometrical structure of both data manifold
and feature manifold, GCF have more discriminating power
than other methods.

® (lustering performances on TDT2 and Reuters document data-
sets are almost enhanced using NCW weighting scheme for all
the algorithm. However, NCW weighting method does little
help to improve the clustering performance on COIL20 and PIE.
This phenomenon reveals that NCW weighting is beneficial to
document clustering rather than image clustering.

5.4. Parameters selection

Our GCF algorithm has three essential parameters which are
the same with the DRCC method: the number of nearest neighbors
p and the regularization parameters 4 and x. We will investigate
the sensitivity with respect to the regularization parameter A( = y).
When we vary the value of 1, we keep the parameter p fixed at 5 in
the methods of DRCC and GCF. Also when we vary the value of p,
we keep the regularization parameter (=) fixed at 100 in the
methods of DRCC and GCF. We conduct four experiments on the
TDT2 and Reuters, COIL20 and PIE datasets to test the sensitivity of
our proposed algorithm to the selection of these parameters, and
the results are shown in Figs. 1 and 2. From these figures, we can
clearly see that:

® From the results shown in Fig. 1, we can observe that the
clustering results of our proposed algorithm decreases as the
size of neighborhood p increases. Since the graph constructed
with relatively large size of neighborhood cannot reflect the
underlying manifold structures of datasets.

® The performance of our proposed algorithm is very stable with
respect to the value of two regularization parameters 4 and u.

6. Conclusion

In this paper, we proposed a novel algorithm, called dual-
graph regularized concept factorization (GCF), which simulta-
neously considers the geometric structures of both data manifold
and feature manifold. As an extension of GCF, we extend that our
proposed method can also be apply to the negative dataset. Since
our proposed algorithm: GCF can effectively make use of the
structure information contained in data as well as features, it has
more discriminating power than NMF, CF and LCCF. Then we
developed the iterative updating optimization schemes for GCF,
and provided the convergence proof of the optimization scheme.
Finally, we provided a variety of experiments on TDT2 and
Reuters document datasets, COIL20 and PIE image datasets to
demonstrate the effectiveness of our proposed algorithm, from
which we also find that our proposed method have high para-
meter stability.
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Appendix A. (proof of Theorem 5)

To prove Theorem 5, we need to show that the objective
function Jgcr in Eq. (9) is nonincreasing under the updating rules
stated in Eqgs. (12) and (13). Since the third term of Jgce is only
related to W, we have exactly the same update formula for V in
(our proposed method) as the LCCFE. Thus, we can use the
convergence proof of LCCF to show that Jece is nonincreasing
under the update step in Eq. (13). Please see [11] for details. Now,
we make use of an auxiliary function similar to that used in the EM
algorithm [26] to prove the convergence of Theorem 5. We begin
with the definition of the auxiliary function.

Definition 1. The function G(w,w’) is an auxiliary function for
F(w), if the G(w,w') > F(w) and G(w, w) = F(w) are satisfied.

The auxiliary function is very useful because of the following
lemma.

Lemma 1. if G is an auxiliary function of F, then F is nonincreasing
under the update

w&+D = arg min G(w, w) (23)
w

Proof. FwK+1) < Gw&K+D wky < Gw, wky = Fw®),
Next we will show that the updating rule for W in Eq. (12) is
exactly the update in Eq. (23) with a proper auxiliary function.
Considering any element w,, in W, we use Fg, to denote the
part of Jeeg Which is only relevant to wy,. It is easy to check that

F, = Joce) (L 2RV 2KWVV 4+ 2L W),
oW ),

F’ b = 2(K)30 (V' V), + 20(Lw),a

Since our update is essentially element-wise, it is sufficient
to show that each Fg, is nonincreasing under the update step of
Eq. (12). O

Lemma 2. Function
Gw, wg) = Fap(Wg )+ Fop(Wo, YW —wgy))
| (KWV'V), +u(DT W),

(K)
Wab

w—wk)y? (24)

is an auxiliary function for Fg,.

Proof. Since G(w,w)=Fg(w) is obvious, we need show that
Gw, W) > Fap(w). To do this, we compare the Taylor series

expansion of Fy,(w)

Fap(W) = Fap(W) + Foy Wy w —w')

) 0 (VT V) -+ (L) (W — WD)

with Eq. (23) to find that G(w,w(})) > Fg(w) is equivalent to

(KWV'V)g, + (D W),

(K)
Wab

> (K)go (V' V) + (L) gq (25)

We have

k
KWV'V),, = 121 (KW)y (V)

> (KW)g,(V'V)p,

k
= X Wiy (VT V) > Wi (K)go(V V)
=1
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and
w M W, (K) W, (K)
uDT W)y = p '21 Daj Wy = #D Wy,
Jj=

w w K K
> (D" —S") W) = u(Liy) WS

Thus, Eq. (25) holds and G(w, W(al;)) > Fap(w).
We can now demonstrate the convergence of Theorem 5. O

Proof of Theorem 5. Replacing G(w,w(,)) in Eq. (23) by Eq. (24),
we get

FapW3) w0 (KV+uS"W),,

b KWV, +2uDVW),, P (KWVIV+,DVW),,

(K+1) _ 1K) (K)
Wab - -

Since Eq. (24) is an auxiliary function, Fg, is nonincreasing
under this updating rule. O

Appendix B. (Weighted GCF)

In this appendix, we give the solution to the weighted GCF. Let
each data point has weight y; and ij is the jth row vector of V, the
weighted objective function is

N
Jece= Y 7% — XWz;)" (X; — XWz;) + ATr (V' LyV) + 4 Tr(W Ly W)
j=1

= Tr{(X — XWVT)r (X — XWVT) T+ A Tr(VI Ly V) + 1 Tr(WT Ly W)
_ Tr[(XI“l /2 _ XWVTF”Z)(XI“] /2 _xXWvT /2 )T]
+ ATr(VTLyV) + 4 Tr(WT Ly W)
_ Tr[(XFl /2 _ XWVTI“”Z)T(XFVZ _XwvT 1 /2)]
+ATr(V Ly V) + uTr(WTLw W)
=Tr[(I-W VK A - W V)] +ATr(VTL, V') + 4 Tr(WTL;, W)

where I" is the diagonal matrix consists of y;, W' =r"12W,
V =712V L, =r-12Lyr-12,

Ly =7"2Lw I'/? and K =r"2Kr'/2. Notice that the above
equation has the same form as Eq. (10), so the same algorithm can
be used to find the solution.
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