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Abstract: In computer vision and pattern recognition applications, there are usually a vast number of unlabelled data whereas the
labelled data are very limited. Active learning is a kind of method that selects the most representative or informative examples for
labelling and training; thus, the best prediction accuracy can be achieved. A novel active learning algorithm is proposed here
based on one-versus-one strategy support vector machine (SVM) to solve multi-class image classification. A new uncertainty
measure is proposed based on some binary SVM classifiers and some of the most uncertain examples are selected from SVM
output. To ensure that the selected examples are diverse from each other, Gaussian kernel is adopted to measure the similarity
between any two examples. From the previous selected examples, a batch of diverse and uncertain examples are selected by
the dynamic programming method for labelling. The experimental results on two datasets demonstrate the effectiveness of the
proposed algorithm.
1 Introduction

Image classification is a significant problem in computer
vision and pattern recognition. Many supervised learning
algorithms have been proposed to solve this problem.
However, the classification results rely heavily on the
quality of the labelled data. In real-world applications, there
are a large number of unlabelled data, whereas the labelled
data are expensive to obtain. Moreover, redundant data in
the training set slow down the training process without
improving prediction accuracy. To improve classification
performance, informative or representative examples should
be used for learning and the redundant examples must be
removed from the training set. Active learning [1, 2] is a
kind of approach that selects the most informative examples
for labelling and training a classifier.
The most important problem in active learning is how to

select the most valuable examples so that the maximum
prediction accuracy can be achieved. There are some criteria
that have been proposed to direct example selection.
Uncertainty sampling, which queries the examples whose
prediction labels are most uncertain, is the most popular
criterion. The typical uncertainty sampling is support vector
machine (SVM)-based margin sampling [3] that selects the
examples nearest to the hyperplane. Moreover, criteria such as
variance reduction [4], diversity [5] and optimal experimental
design [6] have also been widely explored in active learning.
According to the number of examples selected at each time,

active learning can be classified as single-mode active learning
and batch-mode active learning. Traditional margin sampling
is single-mode active learning, which selects only one
example at each time. Now, more and more batch-mode
active learning algorithms have been proposed, since they
more efficiently improve the classifier’s performance. Fu
et al. [7] proposed an active learning algorithm to find an
instance subset with a maximum utility value. To achieve
this goal, the following are simultaneously considered: (i)
the importance of individual instances and (ii) the disparity
between instances, to build an instance-correlation matrix.
Many active learning methods [3, 8] were proposed to

solve binary classification problems. However, multi-class
classification is a more practical and significant problem in
real-world applications. Demir et al. [5] proposed an active
learning method with one-versus-all (OVA) strategy SVM,
to perform classification of remote-sensing images. Both
uncertainty and diversity criteria were combined in the
example selection process. Joshi et al. [9] developed a
value-of-information algorithm that chooses informative
examples while also considering users’ annotation cost.
Recently, Kang and Xu [10] proposed an active learning

method combining uncertainty and diverse criteria. They
first selected h most uncertain examples. Then, k most
diverse examples are selected from the h examples. These
two criteria are used in two phases of example selection,
respectively, while they are not combined together. Guo
and Schuurmans [11] proposed discriminative active
learning that can simultaneously maximise the likelihood of
labelled instances and minimise the entropy of the labels for
unlabelled instances. However, this algorithm was only
applied for two-class classification problems and the
computational complexity is very high. Ebert et al. [12]
combined exploration and exploitation for example
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Fig. 1 General process of active learning
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selection. Specifically, two uncertainty measure methods and
three diversity measure methods were explored and
compared. The combination method only computed the sum
of criteria scores.
Although these works explored more than one criterion in

active learning, the criteria’s combination methods are usually
too simple, for example, computing the sum or product of the
criteria’s scores. Several active learning algorithms based on
OVA strategy SVM [5] have been developed, while there is
little work based on one-versus-one (OVO) SVM [13]. In
this paper, a novel batch-mode active learning algorithm is
proposed, which is based on OVO SVM and combines
uncertainty and diversity criteria. Inspired by [5, 7, 13], we
use dynamic programming to combine different criteria in
active learning. The example selection process can be
divided into two phases: the first phase is selecting a
relative large batch of uncertain examples; the other phase
is selecting a batch of uncertain and diverse examples from
the examples previously selected. This is the first work
applying dynamic programming to the combination of
different criteria.
The rest of this paper is organised as follows: a short

introduction of related work is provided in Section
2. Section 3 elaborates the proposed active learning
approach. The experiment settings and results of image
classification are presented in Section 4. Section 5 discusses
the conclusion and future work.

2 Related work

In this section, we introduce some work which is related to
our proposed approach. In Section 2.1, a brief introduction
of the general active learning problem is presented. An
active learning algorithm based on OVO SVM is introduced
in Section 2.2.

2.1 Active learning problem

Given a labelled dataset L = {x1, x2, . . . , xn}, where each
xi is an instance of d-dimensional feature vector and has a
label yi∈ {1, 2, …, C}. The unlabelled dataset is
U = xn+1, xn+2, . . . , xn+m

{ }
, where the label of xi(i = n + 1,

…, n +m) is unknown and n ≪ m. Generally, a model can
be trained from the initial labelled dataset L with classifier
C. The task of active learning is to find a subset
Z = {xs1 , xs2 , . . . , xsk} # U to improve the classification
performance most on testing set Dtest. The process of
example selection usually repeats several times until the
number of selected examples or required accuracy is
reached. The process of the active learning method is
shown in Fig. 1.

2.2 Multi-class active learning with OVO SVM

The OVO strategy for multi-class SVM is computationally
efficient and shows good classification performance.
Recently, Joshi et al. [13] proposed two active learning
algorithms called entropy measure (EP) and
best-versus-second best (BvSB) based on OVO SVM.

2.2.1 Entropy measure (EP): Entropy is an effective
method to measure examples’ uncertainty and relies on
probability estimates of class membership for all the
examples. For the multi-class case, Joshi et al. adopted the
pairwise coupling method [14] to obtain probability
estimates.
2
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Suppose that the probability of unlabelled example xi
belongs to class j ( j = 1, …, C ) is pj. The discrete entropy
of xi can be computed as

H(xi) = −
∑C
j=1

pj × log(pj) (1)

If the entropy of an example is large, the classifier is uncertain
about its label prediction.
At each round of active learning, examples with the highest

estimated value of discrete entropy are selected to query the
user. The entropy-based active learning outperforms random
selection in some cases.
2.2.2 Best-versus-second best (BvSB): In EP-based
active learning, the entropy value is closely related to the
probability values of unimportant classes. Instead of using
the entropy score, Joshi et al. proposed a more greedy
approach to measure examples’ uncertainty. Specifically, the
difference between the probability values of the two classes
having the highest estimated probability value is computed
as a measure of uncertainty. This method is called the
best-versus-second-best (BvSB) approach and is a more
direct way to estimate the uncertainty of the prediction results.
Both EP and BvSB methods are based on the uncertainty

criterion. They estimate the uncertainty of the classification
results with different methods while other criteria of active
learning are neglected. In Section 3, a new method
combining uncertainty and diversity criteria is proposed for
example selection.

3 Proposed active learning algorithm

Our proposed active learning is based on uncertainty and
diversity criteria. The example selection process can be
divided into two phases: one is selecting h most uncertain
examples from all unlabelled examples; the other is
selecting k diverse and uncertain examples using dynamic
programming from h uncertain examples. In Sections 3.1
and 3.2, the method to estimate examples’ uncertainty and
diversity is introduced. The proposed algorithm is described
in Section 3.3. Section 3.4 introduces a dynamic
programming approach to solve the optimisation problem.
IET Comput. Vis., pp. 1–8
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3.1 Uncertainty measure

Original SVM is a classifier for binary classification
problems. However, it can also be applied to multi-class
problem by OVO strategy. Assume that the labelled dataset
is L = {x1, x2, . . . , xn} while the unlabelled dataset is
U= xn+1, xn+2, . . . , xn+m

{ }
, and n ≪ m. The label of xi(i =

1, …, n) is yi∈ {1, 2, …, C}. In OVO strategy, a binary
classifier is created between any two classes, so that there
are C(C− 1)/2 binary classifiers. Suppose fij(*) (i = 1,…, C− 1,
j = i + 1, …, C ) is the decision function to classify examples
from class i and class j, fji(*) can be defined as fji(*) =
− fij(*). For an example x, fij(x) > 0 means classifier fij(*)
prefers to predict x as label i. Larger fij(x) indicates that the
classification result is more certain.
The final label of x is predicted as the class which gets the

maximum votes. If we define

vij = 1, if fij(x) ≥ 0
0, else

{
(2)

The final label of x is predicted as

p = argmax
i=1,...,C

∑C
j=1

vij (3)

To estimate the uncertainty of classification results on
unlabelled data, we compute the difference between the
decision values of the two classes having the max votes. As
defined above, p is the class having the most votes.
Suppose q is the class having the second most votes. Then

q = argmax
i=1,...,C,i=p

∑C
j=1

vij (4)

The uncertainty of prediction on unlabelled example x can be
measured as

unc(x) =
∑C
j=1

f pj(x)−
∑C
j=1

fqj(x) (5)

Smaller unc(x) means that the prediction result on x is more
uncertain. This uncertainty measure shares a similar idea
with BvSB method. The difference from BvSB is that this
method only selects uncertain examples for manual
labelling, so we select h most uncertain examples for
further selection.

3.2 Diversity measure

Uncertainty sampling is a strong criterion for example
selection in active learning, but it has a drawback. It may
select some uncertain examples that have much redundant
information. For example, some selected examples are very
close and similar to each other. Thus, the overall
information of the selected examples is not much.
In this section, the Gaussian kernel is adopted as a

similarity measure between two examples. The similarity of
examples xi and xj is defined as

S(xi, xj) = exp −‖xi − xj ‖2
2s2

( )
(6)
IET Comput. Vis., pp. 1–8
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As can be seen from (6), the similarity S(xi, xj) between two
examples xi and xj is small if these two examples are far from
each other, and vice versa.
Suppose a batch of examples S = s1, s2, . . . , sh

{ }
have

been selected. If we hope that the new example x has small
similarity with examples in S, we only need to make sure
that the value of max

i=1,...h
S(x, si) is small. Therefore, the

similarity between a new example x and the selected

examples S is defined as

sim(x, S) = max
sj[S

S(x, sj) (7)

Smaller sim(x, S) means less similarity between x and S.

3.3 Proposed algorithm

In active learning, we aim to select uncertain examples that
are also diverse from each other. First, h most uncertain
examples are selected from all the unlabelled examples.
Then we try to select k examples that are most diverse and
uncertain from the selected h examples. Suppose the h most
uncertain examples are S = {s1, s2, . . . , sh} # U. Zk is an
arbitrary subset of S that contains k examples and
Zk =

{
sz1 , . . . , szk

}
. The final solution Z can be obtained

by solving the following problem

Z = argmin
Zk#S

∑k
i=1

lunc szi

( )
+ (1− l)sim szi , Zk

( )( )
(8)

where l is the tradeoff parameter that can determine the
importance of uncertainty and diversity. By solving (8), the
examples with most uncertainty and diversity can be
selected for active learning.
Unfortunately, the optimisation problem (8) is a highly

complicated problem. To obtain the optimal subset Z, we
would have to search over all possible sets. It is impossible
to finish the process in a short time with the increase of
examples.
It can be noted that unc(szi ) is only dependent on szi while

sim(szi , Zk ) is relevant to
{
sz1 , . . . , szk

}
. Suppose

Su = {s1, s2, . . . , su}(u ≤ h), and Z(u, v)(v≤ u) is the
optimal solution of selecting v examples from Su. We
transform problem (8) into a relatively simple form

Z = argmin
Zk#S

∑k
i=1

(lunc(szi )+ (1− l)sim(szi , Z(zi − 1, i− 1)))

(9)

where sim(szi , Z(zi − 1, i− 1)) is the similarity between szi
and the selected i− 1 examples from Szi−1 ={
s1, s2, . . . , szi−1

}
.

Obviously, sim(szi , Z(zi − 1, i− 1)) is relevant to {z1, …,
zi} but irrelevant to {zi + 1, …, zk}. It means that when we
select the ith example, it is required to be diverse from the
selected examples {sz1 , . . . , fszi−1

}. This guarantees that the
next selected example must be different from the previous
selected examples and the global similarity is small.

3.4 Dynamic programming approach

The optimal Z in problem (9) can be obtained by dynamic
programming that breaks it down into simpler subproblems.
3
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As previously defined, Su = {s1, s2, . . . , su}(u ≤ h), and
Z(u, v) is the optimal solution of selecting v examples from
Su.
Specifically,Z = Z(h, k). Now, we define F(u, v) and Z(u, v)

(u≥ v) as follows

F(u, v) = min
Zv#Su

∑v
i=1

lunc szi

( )(

+ (1− l)sim szi , Z(zi − 1, i− 1)
( ))

(10)

Z(u, v) = argmin
Zv#Su

∑v
i=1

(lunc(szi)

+ (1− l)sim(szi , Z(zi − 1, i− 1))) (11)

where u∈ {1, 2, …, h}, v∈ {1, 2, …, k}, and u≥ v.
Our final goal is to find Z(h, k) that decides which k

examples should be selected from the h most uncertain
examples.
There are two special situations that should be noted: v = 1

and u = v. If v = 1, there is no redundancy since only one
example is selected. Therefore, the example with maximum
uncertainty should be selected. If u = v, obviously, all of the
Fig. 2 Active learning with uncertainty and diversity sampling
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examples in Su should be selected. So

F(u, v) =
minunc(si)

si[Su

if v = 1

∑u
i=1 lunc(si)+ (1− l)sim(si, Si−1) if u = v

⎧⎨
⎩

(12)

Suppose we have already obtained the optimal solution of
selecting v− 1, and v examples from Su−1, now we consider
how to select v examples from Su. If the prediction of example
su is certain and su is similar with previous selected examples
Z(u− 1, v− 1), obviously we will not select su. Hence, the
optimal solution of selecting v examples from Su should be
the same as selecting v examples from Su−1. On the contrary,
if the prediction of su is uncertain and su is diverse from
Z(u− 1, v− 1), we prefer to select it for labelling. In this
situation, since Z(u− 1, v− 1) is the optimal solution of
selecting v− 1 examples from Su−1, the optimal solution of
selecting v examples from Su is Z(u, v) = Z(u− 1, v− 1)∪ su.
From the above analysis, the relationships between F(u−

1, v− 1), F(u− 1, v) and F(u, v) can be concluded as (13).

C(u) = lunc(su)+ (1− l)sim(su, Z(u− 1, v− 1))

F(u, v) = min(F(u− 1, v), F(u− 1, v− 1)+ C(u))
(13)
IET Comput. Vis., pp. 1–8
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Fig. 3 Examples of Outex from categories: sky, tree, bush, grass, road and building
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where 2≤ u≤ h, 2≤ v≤ k and v≤ u.
The global optimal solution Z(h, k) can be obtained by

iteration of (14).

Z(u, v) = Z(u− 1, v), if F(u, v) = F(u− 1, v)
Z(u− 1, v− 1)< su, else

{
(14)

In this way, the selected examples are uncertain and diverse
from each other.
The proposed active learning algorithm is summarised in

Fig. 2. As can be seen from Fig. 2, the proposed active
learning algorithm is easy to perform and the computational
cost is low.

4 Experiments

This section reports experimental results of the proposed
active learning algorithm. To assess the effectiveness of the
proposed active learning technique, it is compared with
other methods:

† Random sampling (RS) method, which selects examples
randomly from unlabelled dataset.
† EP method [13], which queries examples with maximum
entropy.
† BvSB algorithm [13], which computes the difference
between the probability values of the two classes having the
highest estimated probability value as a measure of
uncertainty. The most uncertain examples are selected for
labelling.
† Multiclass-level uncertainty with angle-based diversity
(MCLU-ABD) [5], which combines uncertainty and
diversity criteria and uses cosine angle distance to measure
the examples’ similarity.
† Active learning combining uncertainty and diversity,
which is proposed in this paper.

In this section, the experiments are carried out on terrain
classification with the Outex Database [15] and scene
recognition with scene 13 dataset [16]. Sections 4.1 and 4.2
introduce the settings and results of these two experiments,
respectively. We apply OVO SVM with radial basis
function kernel as the baseline classifier in our experiments.
The optimal parameters C and γ are found by grid search
on the parameter space.
IET Comput. Vis., pp. 1–8
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There are some parameters in our algorithm, namely, the
Gaussian kernel parameter (σ), the tradeoff parameter (l)
and the number of most uncertain examples selected each
time (m). σ, l and m are empirically set to 1, 0.6 and 10 ×
k, respectively. k is the number of final selected examples
for active learning and is decided based on the size of dataset.

4.1 Terrain classification

The terrain image dataset used in the experiment was
constructed from the Outex Database [15], which consists
of two datasets: Outex-0 and Outex-1. Each of them is
composed of 20 outdoor scene images and the image size is
2272 × 1704 pixels. The images are marked as one type of
bush, grass, tree, sky, road and building. We cut the marked
area of each image into 64 × 64-pixel patches and each
patch is regarded as an example in the experiments. The
examples in Outex-0 have six categories, including bush,
grass, tree, sky, road and building. Outex-1 has only five
categories, since it does not have the bush category.
In the experiments, 50 patches of each class are extracted to

construct a dataset. Five examples from each class are
randomly selected for initial labelling to construct L. The
rest is composed as unlabelled dataset U. The testing
dataset, which is predicted to evaluate active learning
algorithms’ performance, also includes 50 patches from
each class. At each round, k examples from U are selected
with different active learning methods for labelling and
adding to L. We set k to be 5 in Outex-0 and 3 in Outex-1.
The classifiers are retrained from L and the classification is
performed on testing dataset. The correct classification rate
is used as accuracy to evaluate the performance of active
learning methods.
Two examples of each class are shown in Fig. 3. To

achieve better classification performance, both colour and
texture features are extracted. For the colour feature, we
extract the colour histogram feature proposed in [17]. For
the texture feature, the popular rotation-invariant operators
LBPriu28,1+16,3 [18] are adopted. Lastly, each example is
represented by a 43-dimensional feature vector.
In this experiment, k examples are selected at each round

and the iteration will repeat 20 times. Thus, 20 × k examples
are selected in total. At each round, C(C− 1)/2 binary
classifiers are trained from the labelled set. We perform
classification on the testing set and compute the
classification accuracy. The experiments are repeated 20
times and the average accuracy is computed as the final result.
5
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Fig. 4 Classification performance on Outex-0 and Outex-1 dataset with different active learning algorithms

a Results on Outex-0
b Results on Outex-1
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Fig. 4 shows the average classification accuracy against the
number of selected examples by different active learning
algorithms. It can be seen that the proposed algorithm
significantly outperforms RS, EP, BvSB and MCLU-ABD
methods in most cases. MCLU-ABD performs better than RS,
EP and MCLU-ABD, while performing worse than the
proposed method. Both EP and BvSB outperform RS, and
BvSB is slightly better than EP. As can be seen from Fig. 4a,
with only 60 selected examples, the proposed algorithm
performs even better than the other algorithms with 70 selected
examples.
4.2 Scene recognition

Scene recognition is a vital important problem in computer
vision. In this section, we perform scene recognition with the
scene 13 dataset [16] using different active learning methods.
The image dataset we used in this experiment consists of
2600 images of 13 natural scene categories (i.e. 200 images
of each category). 40% of the dataset constructs the testing
set to evaluate the classification performance. Six images
from each category are randomly selected to construct the
initial labelled set L. The rest of the images are considered as
unlabelled dataset U for active learning selection. The GIST
Fig. 5 Sample images from categories: forest, mountain, suburb, office
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features [19] are extracted since they have good
discriminatory power in classification. Fig. 5 shows some
sample images from the categories of forest, mountain,
suburb, office, highway, kitchen, bedroom and living room.
At each round, we apply each active learning algorithm to

select k( = 10) examples for manual labelling and adding to L
for retraining classifiers. This selection process will repeat 20
times, thus 200 examples are selected in total. The
experiments are repeated 20 times and the average accuracy
is computed as the final result.
Fig. 6 shows the average accuracy of different active

learning approaches. Again, our proposed active learning
algorithm outperforms the other algorithms in most of the
cases. MCLU-ABD performs the second best and it is close
to the proposed method in some cases. BvSB performs
slight better than EP. RS performs worst in most of cases
since it selects examples without any criteria.
4.3 Time consumption analysis

Time consumption of machine learning algorithms is a
significant problem in real-world applications. In this
section, the time cost of different active learning algorithms
is analysed.
, highway, kitchen, bedroom and living room

IET Comput. Vis., pp. 1–8
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Fig. 6 Classification results on scene 13 dataset

www.ietdl.org
A Macbook with 2.4 GHz Intel Core i5 and 8 GB RAM
with OS X 10.9 and MATLAB 2013a was used as the
experimental platform. The time consumption of two
experiments is shown in Tables 1 and 2. Obviously, RS
costs the least time among all the algorithms. The time
consumption of EP, BvSB and MCLU-ABD is comparable
to each other. Our proposed method costs a little more time
than EP, BvSB and MCLU-ABD, since it computes both
the uncertainty measure and the diversity measure of the
examples. Considering the improvement of classification
Fig. 7 Impacts of the parameter h on the performance of the
proposed active learning algorithm

Table 1 Time consumption of terrain classification (Outex-0) experim

Algorithm RS EP

time-consuming 2.61 8.65

Table 2 Time consumption of scene recognition experiment (second

Algorithm RS EP

time-consuming 20.49 70.97

IET Comput. Vis., pp. 1–8
doi: 10.1049/iet-cvi.2014.0140
performance, this little extra time is worth while.
Consequently, it is not a very time-consuming algorithm.
4.4 Parameter selection

There are two essential parameters in our proposed algorithm:
the number of selected most uncertain examples h and the
tradeoff parameter l in (9). These two parameters are
empirically set to 10 × k and 0.6 in previous experiments. In
this section, we examine the impacts of these two
parameters on the experimental performance.
The impacts of the parameters on the two datasets are very

similar. Therefore, only the results on the scene-13 dataset are
shown here. For comparison, we let each active learning
algorithm select k = 10 examples for adding to the training
set with initial 100 labelled examples. As before, the
evaluations are conducted with 20 randomly generated
subsets and each subset contains 2600 samples. Figs. 7 and
8 show the average classification accuracy against different
parameters h and l. In Fig. 7, l is fixed at 0.6, and in
Fig. 8, the value of h is fixed at 100. As can be seen from
the figures, the proposed method can achieve better
performance than other methods over a large range of h and
l. For example, in Fig. 8, if the value of l is in [0.3, 0.8],
the performance is better than other algorithms. If l is close
to 0 or 1, the proposed method degenerates into uncertainty
sampling or diversity sampling where only one criterion
works. Therefore, the performance is worse than
MCLU-ABD. In conclusion, the experimental results are
not very sensitive to the parameters. Thus, the parameter
Fig. 8 Impacts of the tradeoff parameter l on the performance of
the proposed active learning algorithm

ent (seconds)

BvSB MCLU-ABD Proposed

8.30 8.02 9.55

s)

BvSB MCLU-ABD Proposed

70.70 74.89 77.46
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selection is not a crucial problem in our algorithm. It is not a
difficult job to find appropriate parameters for the experiment.

5 Conclusions

In this paper, we proposed a novel active learning algorithm
to select the most uncertain and diverse examples.
One-vs-one strategy has been adopted for SVM to solve
multi-class classification. A new uncertain measure is
developed from the multiple binary classifiers and the
Gaussian kernel is applied for similarity measure. During
the example selection process, first h most uncertain
examples are selected for further selecting. Then k most
uncertain and diverse examples are selected by dynamic
programming algorithm. The experimental results on two
real-world applications demonstrate the effectiveness of our
approach.
Both uncertainty and diversity are very popular criteria in

active learning. How to measure the uncertainty and
diversity of examples has been explored a lot, but there is
not an accepted best method. In addition, how to combine
different criteria is a critical and difficult problem in active
learning. In the future, we will explore better methods to
measure examples’ uncertainty and diversity and develop an
advanced combination approach.
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