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Abstract A novel support vector machine (SVM) model
by combining kernel principal component analysis (KPCA)
with improved chaotic particle swarm optimization (ICPSO)
is proposed to deal with intrusion detection. The proposed
method, in which multi-layer SVM classifier is employed to
estimate whether the action is an attack, KPCA is applied as
a preprocessor of SVM to reduce the dimension of feature
vectors and shorten training time. To shorten the training time
and improve the performance of SVM, N-RBF is employed to
reduce the noise generated by feature differences, and ICPSO
is presented to optimize the punishment factor C, kernel para-
meters σ and the tube size ε of SVM, which introduces chaos
optimization and premature processing mechanism. Exper-
imental results illustrate that the improved SVM model has
faster computational time and higher predictive accuracy, and
it can also shorten the training time and improve the perfor-
mance of SVM.
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1 Introduction

As the Internet becomes a part of people’s work and daily life,
intrusion detection (ID) is an essential requirement to protect
the sensitive information stored in the networks. Intrusion
detection, as proactive security protection technique in net-
work security, is widely used in detecting, identifying and
tracking the intruders (Lee et al. 2008). Researchers always
want to find an intrusion detection technology with better
detection rate and very low false alarm rate.

Intrusion detection can be seen as a classification prob-
lem in essence, to distinguish between the normal activities
and the malicious activities. Therefore, some data mining
and machine learning techniques are proposed for intrusion
detection to automatically learn attack behaviors from his-
toric audit data, such as decision tree (DT) (Lee et al. 2008),
genetic algorithm (GA) (Shafi and Abbass 2009), neural
network (Wang et al. 2010), principal component analysis
(PCA) (Wang and Battiti 2006), fuzzy logic (Chimphlee et
al. 2006), K-nearest neighbor (Tsai and Lin 2010), rough
set theory (Yang and Zhu 2011) and support vector machine
(SVM) (Khan et al. 2007).

Among the methods mentioned above, SVM is an effec-
tive one, which is a well-known classifier tool based on small
sample learning, it realizes the theory of VC dimension and
principle of structural risk minimum, thus it does not have
the over fitting problem that artificial neural network cannot
overcome. Tsai et al. (2009) thought SVM had manifested its
robustness and efficiency in the network action classification,
and it was widely used in intrusion detection system (IDS)
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as a popular method. Eskin (2000) presented unsupervised
anomaly detection model, in which applied three unsuper-
vised learning algorithms, including K-neighbor, clustering
method and SVM. Hu et al. (2003) proposed an anomaly
detection algorithm based on Robust SVM, which can effec-
tively detect intrusions even if noise existed. To improve
efficiency of the training, Zhang and Shen (2005) expanded
traditional SVM, Robust SVM and One-class SVM to be
of online behaviors. Shon et al. (2005) employed SVM for
intrusion detection, and used genetic algorithm (GA) for fea-
ture selection. Srinoy (2007) proposed an intrusion detection
model using SVM and particle swarm optimization (PSO),
which used PSO to extract intrusion features and SVM to
classify. Peddabachigari et al. (2007) proposed a hierarchi-
cal hybrid intelligent system based on decision trees and
SVM. Fei et al. (2008) proposed a new anomaly detection
algorithm that can update normal profile of system usage
pattern dynamically. Horng et al. (2011) used the hierar-
chical clustering algorithm to provide the SVM with fewer,
abstracted, and higher qualified training instances. Wu and
Banzhaf (2010) referred to the review of computational intel-
ligence in intrusion detection. Kolias et al. (2011) gave the
survey of swarm intelligence in intrusion detection. To over-
come the uncertainty problem of an innate feature due to the
limited views provided by system monitoring tools, IDS and
various types of logs, Kavitha et al. (2012) adopted a new
technique known as neutrosophic logic (NL). Kuang et al.
(2012) proposed KPCA SVM with GA, which used KPCA
to extract intrusion features, and GA to optimize the parame-
ter of SVM.

In addition, when the differences between the sample
attributes are very big, using RBF will produce a larger num-
ber of support vectors and longer training time. Kuang et al.
(2014) presented an improved RBF kernel function (N-RBF)
to shorten the training time and improve the performance of
SVM.

To solve the above-mentioned problems and get better
performance, we propose a new approach for network intru-
sion detection. In the proposed method, use the KPCA to
extract the principal features of the normalized data, and
employ multi-layer SVM classifier to estimate whether the
action is an attack. To shorten the training time and improve
the performance of SVM, use N-RBF to reduce the noise
generated by feature differences. A novel improved chaotic
particle swarm optimization algorithm (ICPSO) is pro-
posed to optimize the parameters of SVM, which introduces
chaos optimization and premature judgment and processing
mechanism.

The remainder of this paper is organized as follows. In
Sect. 2, the proposed SVM classification model is described,
and ICPSO is presented in the Section. Section 3 illustrates
how to construct intrusion detection based on the proposed
SVM model. The experimental results and discussions are

presented in Sect. 4. The conclusions and potential future
work are listed in Sect. 5.

2 Related work and contributions

2.1 Kernel principal component analysis

Principal component analysis (PCA) is a common method
applied to dimensionality reduction and feature extraction
(Jolliffe 1986). PCA method only can extract the linear struc-
ture information in the data set but cannot extract this nonlin-
ear structure information. Kernel principal component analy-
sis (KPCA) is an improved PCA, which extracts the principal
components by adopting a nonlinear kernel method (Chen et
al. 2008; Ding and Tian 2009). A key insight behind KPCA
is to transform the input data into a high-dimensional feature
space F in which PCA is carried out, and in implementa-
tion, the implicit feature vector in F does not need to be
computed explicitly, while it is just done by computing the
inner product of two vectors in F with a kernel function. Let
x1, x2, . . . , xn ∈ Rd be the n training samples for KPCA
Kuang et al. (2012). The i th KPCA-transformed feature ti
can be obtained by

ti = 1√
λi

γ T
i [k(x1, xnew), k(x2, xnew), . . . , k(xn, xnew)]T,

i = 1, 2, . . . , p (1)

Here, Column vector γi (i = 1, 2, . . . , p; 0 < p ≤ n) is
the orthonormal eigenvectors to the p largest positive eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λp, xnew is a new column vector
sample, k(xi , x j ) is the calculation of the inner product of
two vectors in the hyper-dimensional feature space F with a
kernel function.

Using Eq. (1), the KPCA-transformed feature vector of a
new sample vector can be obtained.

2.2 SVM classification model

After feature extraction using KPCA, the training data points
can be expressed as (t1, y1), (t2, y2), . . . , (tp, yp), ti ∈
Rk(k < d) is the transformed input vector, yi ∈ {−1,+1} is
the target value. In the ε-SVM classification (Srivastava and
Bhambhu 2010), the goal is to find a function f (t) that has at
most ε deviation from the actually obtained targets yi for all
the training data, and at the same time, is as flat as possible
(Kuang et al. 2014). The ε-insensitive loss function denotes
as follows

e( f (t) − y) =
{

0, | f (t) − y| ≤ ε

| f (t) − y| − ε, otherwise
(2)

123



SVM by combining KPCA and ICPSO for intrusion detection

Formally, the optimization problem requires:

minimize 1
2 ‖w‖2 + C

p∑
i=1

(ξi + ξ∗
i )

subject to yi − (w′�(ti ) + b) ≤ ε − ξi

(w′�(ti ) + b) − yi ≤ ε − ξ∗
i

ξi , ξ
∗
i ≥ 0, i = 1, 2, . . . , p; C > 0

(3)

where ξi and ξ∗
i are slack variables, the punishment factor C

is regularization constant, ε denotes the tube size of SVM. C
and ε are both determined by users empirically, the constant
C determines the trade-off between the flatness of f (t) and
the amount up to which deviations large than ε are tolerated.

At the optimal solution, the decision function takes the
following form:

f (t) = sgn

( p∑
i=1

(αi − α∗
i )K (ti , t j ) + b

)
(4)

where αi and α∗
i are the Lagrange multiplier coefficients for

the i th training sample, and obtained by solving the dual
optimization problem in support vector learning (Srivastava
and Bhambhu 2010). The training sample for which αi 	= α∗

i
is corresponded to the support vectors, K (ti , t j ) is a kernel
function, b is found by the Karush–Kuhn–Tucker conditions
at optimality.

2.3 N-RBF kernel function for SVM model

In the SVM, there are some common kernels, and any of
those can be chosen to achieve the boundary function. Their
detailed usages and descriptions, including parameters defi-
nitions, can be found in Hsu et al. (2010). In addition, SVM
constructed by radial basis kernel function has excellent non-
linear classification ability. In this paper, radial basis kernel
function (RBF) used in the SVM classification method is as
follows:

K (ti , t j ) = exp

(
− ∥∥ti − t j

∥∥2

σ 2

)
, σ ∈ R (5)

To shorten the training time and improve its performance,
a new kernel function N-RBF is developed to SVM by
embedding the mean value and the mean square deviation
of attributes, to normalize the attributes’ values. The N-RBF
is then defined as follows:

K (ti , t j ) = exp

(
− ∥∥(ti − m)/s − (t j − m)/s

∥∥2

σ 2

)
(6)

where m = (m1, m2, . . . , m j , . . . , mk) and s = (s1, s2, . . . ,

s j , . . . , sk) are the mean value and the mean square devia-
tion of attributes, respectively, k is the dimension of sample
vectors, m j and s j is denoted as m j = 1

n

∑n
i=1 Li j , s j =√

1
n−1

∑n
i=1 (Li j − m j ), respectively. Where j = 1, 2, . . . ,

k, Li j is the j th attribute of the i th sample, n is the number
of training samples.

According to the functional theory, as long as the function
K satisfies Mercer’s condition, it can be denoted as an inner
product of the interchange space, and it should be a positive
definite kernel. We know that if K1 and K2 are kernel func-
tions in Rn × Rn , and constant λ ≥ 0, then all the functions
below are kernel functions:

(i) K (ti , t j ) = K1(ti , t j ) + K2(ti , t j ) (7)

(ii) K (ti , t j ) = λK1(ti , t j ) (8)

(iii) K (ti , t j ) = K1(ti , t j )K2(ti , t j ) (9)

(iv) K (ti , t j ) = exp(K1(ti , t j )) (10)

Theorem 1 Function N-RBF is a kernel function.

Proof

K (ti , t j ) = exp

(
− ∥∥(ti − m)/s − (t j − m)/s

∥∥2

σ 2

)

= exp

(
−‖(ti − m)/s‖2

σ 2

)

× exp

(
− ∥∥(t j − m)/s

∥∥2

σ 2

)

× exp

(
2((ti − m)/s)((t j − m)/s)

σ 2

)
(11)

Let f (ti ) = exp
(−‖(ti −m)/s‖2

σ 2

)
and h(ti , t j ) =

exp
(

2((ti −m)/s)((t j −m)/s)
σ 2

)
are real functions. We have

K (ti , t j ) = f (ti ) f (t j )h(ti , t j ). 
�
We can conclude that f (ti ) f (t j ) is a positive definite ker-

nel, according to the theorem that if φ is a real function
defined in the space Rn , and then φ(ti )φ(t j ) is a positive
definite kernel.

Then, we define g(ti ) = (ti − m)/s, where g(ti ) is a real
function.

Similarly, we conclude that g(ti )g(t j ) = ((ti − m)/s)
((t j − m)/s) is a positive definite kernel.

Additionally, since σ 2 > 0, function β(ti , t j ) = 2g(ti )g(t j )

σ 2

is a positive definite kernel. Therefore, according to formula
(9), the function h(ti , t j ) is a positive definite kernel.

Since both of f (ti ) f (t j ) and h(ti , t j ) are positive definite
kernels, according to formula (8), function K (ti , t j ) is also a
positive definite kernel.

Therefore, the kernel N-RBF is a positive definite kernel.
Consequently, C, ε and σ are user-determined parame-

ters, the selection of the parameters plays an important
role in the performance of SVM model. Several disciplined
approaches can be used to obtain the optimal parameters
for SVM model, out of which, evolutionary method such as
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genetic algorithm, simulated annealing algorithm and PSO
algorithm, is one of the most widely used approaches. In
this paper, the ICPSO algorithm is proposed to optimize the
parameters of SVM.

2.4 ICPSO algorithm

2.4.1 Particle swarm optimization algorithm

Particle swarm optimization (PSO) is a computation intelli-
gence technique, which was motivated by the organisms’
behavior such as schooling of fish and flocking of birds
(Wang et al. 2009). PSO can solve a variety of difficult opti-
mization problems. The major advantage is that PSO uses
the physical movements of the individuals in the swarm and
has a flexible and well-balanced mechanism to enhance and
adapt to the global and local exploration abilities. Another
advantage of PSO is its simplicity in coding and consistency
in performance. In the D-dimensional search space, the cur-
rent position of the i th particle is represented by a vector:
Pd

i (t)(i = 1, 2, . . . , S; d = 1, 2, . . . , D), S is the number
of particles. The best previous position of the i th particle is

recorded and represented as P
d
best

(t). The global best parti-

cle in the swarms is represented by G
d(t)
best

(t). The velocity of

the i th particle is represented as V d
i (t). Let t denote the cur-

rent generation, the velocity and position of the dth element
of the i th particle at (t + 1)th search from the knowledge
of previous search are updated according to the following
equations.

⎧⎪⎪⎨
⎪⎪⎩

V d
i (t + 1) = W · V d

i (t) + C1 · R1 · (Pd
best(t) − Pd

i (t))

+C2 · R2 · (Gd
best(t) − Pd

i (t))

Pd
i (t + 1) = Pd

i (t) + V d
i (t + 1)

(12)

where C1 and C2 are the positive constant parameters, R1

and R2 are the random functions in the range [0, 1], the
inertial weight W is used to balance the capabilities of global
exploration and local exploration.

2.4.2 ICPSO algorithm

The performance of PSO often suffers the problems of slow
convergence speed during the later period and trapped in
local optima. A novel ICPSO is proposed to optimize the
parameters of SVM, which introducing chaos optimization
algorithm and the premature judgment and processing mech-
anism.

2.4.2.1 Chaos optimization Chaos is characterized as ergod-
icity, randomicity and regularity. Because chaos queues can
experience all the states in a specific area without repeat,
chaotic search becomes a novel tool used as an optimizer (Li
and Jiang 1997). In general, the parameters C1, C2, R1, R2

and W are the important factors which influence the con-
vergence of the PSO. However, parameters R1 and R2 can-
not guarantee the optimization’s ergodicity entirely in phase
space because they are absolutely random in the traditional
PSO. Therefore, chaotic mapping with certainty, ergodicity
and the stochastic property is introduced into PSO to improve
the global convergence. C1, C2, R1, R2 and W are chosen
as follows:

Ci (t) = 4.0Ci (t − 1)(1 − Ci (t − 1)) (13)

Ci (t) = Cmin + (Cmax − Cmin)Ci (t) (14)

Ri (t) = 4.0Ri (t − 1)(1 − Ri (t − 1)) (15)

W (t) = 4.0W (t − 1)(1 − W (t − 1)) (16)

W (t) = Wmin + (Wmax − Wmin)W (t) (17)

where Cmax and Cmin denote the max and the min of acceler-
ation constants which are taken as 2.0 and 1.4, respectively;
Ri (t) ∈ (0, 1), i = 1, 2; Wmax and Wmin denote the max and
the min weights which are taken as 0.9 and 0.4, respectively;
t is the current generation.

2.4.2.2 Premature judgment and processing mechanism The
position of particles determines the fitness of the particle, so
we can track the status of particle swarms by the overall
changing of all particles fitness. Group fitness variance δ2 is
defined as follows:

δ2 =
N∑

i=1

Fi − Favg

F
(18)

where N is population size; Fi denotes the fitness of the i th
particle; Favg is the average fitness of the particle swarms;
F denotes normalization factor for limiting the size of δ2,
which is expressed as follows:

F =
{ max

1≤i≤m

∣∣Fi − Favg
∣∣ , max

1≤i≤m

∣∣Fi − Favg
∣∣ > 1

1, else
(19)

If δ2 < H(H is a given constant), the premature process-
ing is applied. Particles trapped in premature are employed
in chaos optimization according to the following equations.

V d
i (t) = 4.0V d

i (t − 1)(1 − V d
i (t − 1)) (20)

V d
i (t) = Vmin + (Vmax − Vmin)V d

i (t) (21)

where [Vmin, Vmax] is the velocity range of the particles. The
premature particles are updated according to the following
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equations.⎧⎨
⎩

V d
i (t + 1) = W (t) · V d

i (t) + C1(t) · R1(t) · (Pd
best(t)

−Pd
i (t)) + C2(t) · R2(t) · (Gd

best(t) − Pd
i (t))

Pd
i (t + 1) = Pd

i (t) + V d
i (t + 1)

(22)

where t is the current generation, T denotes the maximum
number of generations.

2.5 Optimizing the parameters of SVM model with ICPSO

By means of the ICPSO algorithm, the three major parame-
ters C, σ and ε of SVM model can be optimized. In solving
the parameter selection, each particle represents a potential
solution, comprised of a vector (C, σ, ε) D = 3. The para-
meter optimality is measured by means of fitness functions
that are defined in relation to the considered optimization
problem. In the training and testing process of SVM, the
objective is to improve the generalization performance of
the regression model, namely, minimize the errors between
the true values and forecasting values of the testing samples.
Therefore, the fitness function can be defined as follows.

Fitness = 1

n

n∑
i=1

√√√√ 1

m

m∑
j=1

( f (xi j ) − yi j )2 (23)

where n is the number of folds for cross-validation, m is the
number of each subset as validation, yi j and f (xi j ) represent
the actual value and the forecast value of validation samples,
respectively.

The objective is to minimize the fitness, so the particle
with the minimal fitness value will outperform others and
should be reserved during the optimization process. Accord-
ingly, the optimal parameters can be selected. The process
of optimizing the SVM parameters with ICPSO is shown in
Fig. 1, which is described as follows.

Step 1: Initialize the swarm size S, maximum of gen-
erations T , setting t = 1, [Wmin, Wmax], [Cmin, Cmax],
[Vmin, Vmax], D = 3, [Pd

min, Pd
max] is the value range of SVM

parameters, where d = 1, 2, . . . , D. C1, C2, R1, R2 and W
are generated by chaos optimization using Eqs. (13)–(17).

Step 2: Produce the positions and velocity of particles by
chaos initialization.

Step 2.1: Initialize a vector Zd
i (0)(d = 1, 2, . . . , D),

which each component is set the range (0, 1). Generate
chaos queues Zd

i (t) (i = 1, 2, . . . , N , N > M) by itera-
tion of Logistic equation, which is represented as Zd

i (t) =
4.0 × Zd

i (t − 1) × (1 − Zd
i (t − 1)), i = 0, 1, . . . , S.

Step 2.2: Transfer the chaos queues into the range of the
parameters of SVM according to Pd

i (t) = Pd
min + (Pd

max −
Pd

min)Zd
i (t).

Step 2.3: Calculate the fitness values of the particles
according to Eq. (23), and choose the best M solutions with

the minimal fitness in the swarm as the initial solutions of M
particles, and randomly initialize the velocity of M particles.

Step 2.4: Obtained the individual best Pd
best and the global

best Gd
best.

Step 3: If the convergence criteria or one of the stopping
criteria (Generally, a sufficiently good fitness or maximum
iteration is met) is satisfied, go to step 10.

Step 4: Update the velocity Vi and position Pi of each par-
ticle according to Eq. (22), respectively. And C1, C2, R1, R2

and W are Obtained by Step 1.
Step 5: Compare the fitness value of each particle to its

individual best Pd
best, if current value is better than Pd

best, then
update Pd

best as current position.
Step 6: Compare the fitness value of each particle to the

global best Gd
best. If current value is better than Gd

best, then
update Gd

best as current position.
Step 7: If the convergence criteria or one of the stopping

criteria (Generally, a sufficiently good fitness or maximum
iteration is met) is satisfied, go to step 10.

Step 8: Calculate the group fitness variance δ2 by Eqs. 18,
19. If δ2 < H is not satisfied, let t = t + 1 and go back to
Step 4.

Step 9: Update the velocity and position of the premature
particles according to Eqs. (20)–(22), let t = t + 1, and go
back to Step 3.

Step 10: Obtain the optimal parameters C, σ and ε of
SVM model.

3 Proposed SVM model for intrusion detection

3.1 Intrusion detection types and normalized

This paper takes the KDD CUP99 as the datasets of the exper-
iments (Stolfo et al. 2011). The original datasets consist of
the training datasets and testing datasets. The datasets can
be divided into five categories which are normal, denial of
service (DoS), unauthorized access from a remote machine
(Remote to Local, R2L), unauthorized access to local super-
visor privileges (User to Root, U2R) and probing. Each net-
work record contains 41 attributes, of which 34 are continu-
ous attributes and 7 are discrete ones.

Before the experiments, we need to deal with the dis-
crete attributes by counting the frequency of their values and
converting them to numerical attributes, and transformed all
attributes into the normalized format. That is, treat the dis-
crete property whose value is 0 or 1 as a continuous property.
If the value of one discrete property is noun, we then divide
it into several sub-properties according to all possible val-
ues of it. Take protocol_type as an example. We divide it
into three sub-properties that is protocol_type1 (tcp), proto-
col_type2 (udp) and protocol_type3 (icmp). If its value is tcp
in the records, the sub-property protocol_type1 will be set to
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No

Meet the maximum number of 
iterations or global convergence?

Yes

Yes

Initialize the control parameters of ICPSO and the positions of particles by chaos initialization

No

Calculate the fitness values according to Eq. (23)

If )()( d
best

d
i PFPF < , Update d

bestP

Start

Premature processing: Update the velocity and position according to Eqs. (20) - (22)

Obtain the optimal parametersC ,σ and ε of SVM model

Update the velocity and position according to Eq. (22)

If )()( d
best

d
best GFPF < , Update d

bestG

Meet the maximum number of 
iterations or global convergence?

No

Calculate 2δ by Eqs. (18) - (19)

H2 <δ

End

Yes

Fig. 1 Optimizing the parameters of improved SVM model with ICPSO

1 while the other two sub-properties set to 0. This is benefi-
cial because it can ensure the differences between identical
discrete properties in different records are equal to each other
and deviation in calculation will be avoided.

3.2 Intrusion detection based on proposed SVM model

Multi-SVM classifiers are applied to intrusion detection
because of multi-types existing in network. ‘One-against-
one’, ‘One-against-all’ and ‘Binary tree’ are the popular

methods in SVM multi-class classification (Srivastava and
Bhambhu 2010). As shown in Fig. 2, ‘Binary tree’ SVM clas-
sification algorithm needs only k−1 two-class SVM classi-
fiers for a case of k classes, while ‘One-against-all’ SVM clas-
sification algorithm needs k two-class SVM classifiers where
each one is trained with all the samples and ‘One-against-
one’ SVM classification algorithm needs k(k − 1)/2 two-
class SVM classifiers where each one is trained on data from
two classes (Srivastava and Bhambhu 2010; Hsu et al. 2010).
Obviously less two-class classifiers help expedite the rate of
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R2L, U2R
and Probing

SVM1

Normal 
state

Intrusion 
state

-1

+1

SVM3

-1

+1 R2L

U2R and Probing SVM4

-1

+1

U2R

Probing

SVM2

DoS

+1

-1

Fig. 2 The scheme of intrusion detection based on improved SVM model

training and recognition. Thus, ‘Binary tree’ SVM classifi-
cation algorithm is adapted to construct detection model in
this paper.

Based on the characteristics of different intrusion detec-
tion types, four SVM classifiers are developed to identify
the five states: normal state (Nc) and the four intrusion state
(DoS, R2L, U2R, and Probing) (Kuang et al. 2014). The
scheme of intrusion detection model based on improved
SVM classifiers by combining KPCA with ICPSO is shown
in Fig. 2.

All the four SVMs adopt the N-RBF function as their ker-
nel function, the parameters C, σ and ε are optimized with
ICPSO. The adjusted parameters with maximal classification
accuracy are selected as the most appropriate parameters.
Then, the optimal parameters are utilized to train the SVM
classifiers.

3.3 Proposed intrusion detection model implementation

Intrusion detection belongs to classification problems in
essence, it discriminates abnormal data from anomaly data,
and intrusion data is of a high dimension and contains many
noise attributes. Therefore, KPCA is used to extract the prin-
cipal components, SVM classifiers are applied to intrusion
detection. The proposed hybrid approach is composed of
three stages. In the first stage, the principal components
are achieved based on KPCA theory, which find an opti-
mal subset of all attributes and delete irrelevant and redun-
dant attributes that have no any classification ability. In this
paper, we chose p eigenvectors by trial and error, which cor-
responded to the first p biggest eigenvalues, to form the sub-
eigenspace, satisfying

∑p
i=1 λi/

∑n
i=1 λi ≥ 90 %.

The second stage is to use this attribute subset as the train-
ing dataset and testing dataset of SVM to perform the classi-
fication, and N-RBF kernels are adopted for SVM, ICPSO is
used to select the optimal parameter of SVM. The third stage
is to use negative mean absolute percentage error (MAPE)

as criteria evaluation. MAPE = 1
N

∑N
i=1

∣∣∣ ai −di
ai

∣∣∣ × 100 %,

where ai and di represent the actual and forecast values,

respectively; N is the number of classification. Figure 3
shows the flowchart of KPCA-ICPSO-SVM classification
model for intrusion detection.

4 Experimental results and discussions

4.1 Experimental description

There are some performance indicators for the intrusion
detection system as follows: True Positive (TP), False Posi-
tive (FP), True Negative (TN) and False Negative (FN). TP
represents the abnormal behavior is correctly detected, FP
represents the normal behavior is judged as abnormal, TN
represents the normal behavior is correctly forecasted, and
FN represents the abnormal behavior is wrongly thought as
normal (Tsai and Lin 2010).

(1) Detection rate: DR = TP/(TP + FP) (24)

(2) False alarm rate: FAR = FP/(FP + TN) (25)

(3) Correlation coefficient:

CC = TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(26)

where DR denotes the detection rate and FAR denotes the
false alarm rate. They are important to evaluate the perfor-
mance of the intrusion detection system. In addition, CC
denotes the correlation between the forecast result and the
actual situation. It ranges from −1 to 1, where 1 represents
the forecast result is fully consistent with the actual situation
and 0 is on behalf of a random prediction.

In this paper, the detection rate, false alarm rate and cor-
relation coefficient are used as the evaluation indicators for
KPCA-ICPSO-SVM. The purpose of KPCA-ICPSO-SVM
is not only to enhance the intrusion detection rate and reduce
false alarm rate, but also to reduce the training and test-
ing time as much as possible. So the training and testing
time are adopted as well. The experiments are processed
within a MATLAB R2013b environment, which is running
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Fig. 3 The flowchart of the proposed KPCA-ICPSO-SVM model for intrusion detection

on a PC powered by Pentium IV 3.0 GHz CPU and 3.0 GB
RAM.

4.2 Experiments of KPCA-ICPSO-SVM

In this section, we selected samples from the subset of KDD
to form the training and testing set. There are five data sets
in Table 1.

To verify the performance and effectiveness of KPCA-
ICPSO-SVM, the subset we obtained in Table 1 was ran-
domly divided into two subsets, each subset contains both the
data of normal and abnormal class, one was as the training set,
and the other was as the testing set. Second, randomly select
10 datasets from the training subset, named from F1 to F10,

Table 1 Five training and testing sets

No. Training set Test set

Normal
(%)

Abnormal
(%)

Total Normal
(%)

Abnormal
(%)

Total

D1 83.5 16.5 12,560 72.5 17.5 11,040
D2 90.5 9.5 11,050 35.0 65.0 11,428

D3 55.3 44.7 9,040 57.9 42.1 13,818

D4 93.9 6.1 10,640 85.8 14.2 11,650

D5 76.5 23.5 6,540 64.9 35.1 12,318

Table 2 Different optimization algorithm for the SVM parameters
combination

Models Parameters

C σ ε

KPCA-ICPSO-SVM 127.784 12.481 0.00017

KPCA-CPSO-SVM 86.784 2.496 0.00032

N-KPCA-GA-SVM 83.5191 0.0907 0.0008

KPCA-GA-SVM 218.835 0.7319 0.00739

PCA-GA-SVM 79.437 9.8423 0.2856

PCA-PSO-SVM 198.839 21.8332 0.4872

CPSO-SVM 97.9347 15.0348 0.00347

as the training set, and any two training sample sets did not
intersect. Third, from the testing subset, select the normal and
attack records with the same number to form the testing set.

Now, we evaluated KPCA-ICPSO-SVM by comparing
it with KPCA-CPSO-SVM, N-KPCA-GA-SVM (Kuang et
al. 2014), KPCA-GA-SVM (Kuang et al. 2012), PCA-GA-
SVM, PCA-PSO-SVM, CPSO-SVM (Zhang and Li 2012),
Single-SVM and radical basis function neural networks
(RBFNN) on the detection rate (DR), false alarm rate (FAR),
correlation coefficient (CC), and training time (TrD) and test-
ing time (TeD). We employed four SVMs for the five-class
classification problem including Sect. 3.2, and partitioned
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Table 3 Experiment results among different algorithms

Models Datasets

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

KPCA-ICPSO-SVM
DR (%) 95.036 95.987 95.732 95.021 96.698 96.523 96.357 96.174 95.368 96.372
FAR (%) 1.012 1.006 0.925 1.015 1.001 0.948 0.992 1.005 0.964 0.978
CC 0.962 0.969 0.964 0.952 0.963 0.978 0.958 0.967 0.958 0.976
TrD (s) 0.738 1.629 1.292 1.106 0.454 0.563 0.993 0.623 0.682 0.697
TeD (s) 1.961 5.329 3.008 2.163 1.012 1.139 1.078 1.034 1.236 1.224

KPCA-CPSO-SVM
DR (%) 94.537 95.478 95.226 94.548 96.379 96.289 95.144 95.815 194.846 95.992
FAR (%) 1.108 1.017 1.056 1.337 1.204 1.028 1.004 1.032 0.975 1.134
CC 0.958 0.961 0.952 0.948 0.951 0.967 0.949 0.956 0.952 0.958
TrD (s) 0.872 1.823 1.471 1.213 0.468 0.628 1.099 0.753 0.642 0.752
TeD (s) 2.065 5.986 3.261 2.647 1.235 1.241 1.198 1.421 1.536 1.321

N-KPCA-GA-SVM
DR (%) 94.226 95.302 95.188 94.264 96.302 96.377 95.302 95.302 94.280 96.032
FAR (%) 1.025 1.025 1.0 1.35 1.0 0.956 1.025 1.0 0.975 0.984
CC 0.955 0.966 0.935 0.941 0.946 0.968 0.956 0.956 0.949 0.963
TrD (s) 0.718 1.719 1.328 1.015 0.438 0.553 0.984 0.453 0.438 0.672
TeD (s) 1.985 5.546 3.391 2.719 1.105 1.11 1 1.11 1.469 1.286

KPCA-GA-SVM
DR (%) 92.065 93.033 92.617 93.936 94.017 95.175 93.828 92.093 90.615 93.092
FAR (%) 4.25 4.2 4.3 4.475 4.2 4.9 4.15 4.15 4.425 4.452
CC 0.814 0.831 0.826 0.818 0.839 0.848 0.838 0.84 0.767 0.869
TrD (s) 2.078 6.781 5.797 3.156 8.609 13.812 8.156 10.485 1.094 6.678
TeD (s) 6.218 13.641 11.719 9.266 16.938 21.328 15.532 18.969 4.656 18.254

PCA-GA-SVM
DR (%) 87.403 86.567 87.529 82.475 85.995 86.45 88.166 83.346 88.615 86.658
FAR (%) 3.675 4.4 5.3 5.125 4.075 4.175 4.375 4.05 4.425 4.478
CC 0.867 0.891 0.879 0.789 0.832 0.835 0.880 0.810 0.867 0.852
TrD (s) 7.547 13.3 14.44 6.85 9.164 15.27 18.69 23.2 1.105 14.264
TeD (s) 16.203 14.297 19.656 13.984 14.563 36.047 30.547 30.016 5.688 24.689

PCA-PSO-SVM
DR (%) 88.826 87.353 89.287 83.769 86.422 87.559 90.642 85.042 89.907 88.356
FAR (%) 3.398 4.226 4.642 4.917 3.879 4.006 4.101 3.983 4.285 4.129
CC 0.878 0.897 0.885 0.842 0.859 0.864 0.892 0.835 0.872 0.868
TrD (s) 7.225 11.984 14.902 6.732 9.028 14.252 15.671 26.012 1.219 13.893
TeD (s) 14.865 13.381 15.334 14.082 13.872 32.372 29.637 29.034 6.336 22.345

CPSO-SVM
DR (%) 87.059 85.269 85.987 81.093 83.458 85.075 87.231 82.181 86.016 84.935
FAR (%) 3.734 4.454 5.423 5.634 4.448 4.365 4.627 5.602 4.971 4.701
CC 0.862 0.868 0.876 0.791 0.829 0.842 0.875 0.811 0.863 0.849
TrD (s) 8.347 15.201 16.034 8.012 14.342 23.354 19.069 26.243 1.573 16.125
TeD (s) 17.732 17.452 21.345 16.342 15.563 36.047 33.563 32.556 6.763 26.436

Single-SVM
DR (%) 86.752 77.139 76.571 81.302 75.095 79.637 76.95 75.007 78.615 80.765
FAR (%) 10.95 6.275 5.875 5.8 6.3 6.475 5.625 3.125 4.425 6.8
CC 0.754 0.729 0.73 0.771 0.712 0.748 0.737 0.724 0.767 0.762
TrD (s) 3.844 18.86 17.093 15.625 22.672 28.14 18.047 33.094 1.016 16.251
TeD (s) 14.813 26.656 23.922 20.562 42.094 43.813 35.047 47.969 5.64 32.682

RBFNN
DR (%) 87.063 79.236 77.139 82.265 73.265 80.983 77.654 78.278 80.142 82.247
FAR (%) 8.68 5.62 5.854 6.26 6.85 9.475 6.487 6.128 5.825 5.41
CC 0.812 0.789 0.768 0.798 0.708 0.804 0.826 0.804 0.828 0.8141
TrD (s) 18.345 20.662 15.216 13.245 24.132 26.254 19.452 31.421 2.345 15.564
TeD (s) 16.952 28.346 30.983 24.652 45.584 44.987 26.253 46.874 8.986 30.248
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the data into the two classes of “Normal” and “Rest” (DoS,
R2L, U2R, and Probing) patterns, where the rest was the col-
lection of four classes of attack instances in the dataset. The
objective was to separate normal and attack patterns. Repeat
this process for all classes.

In KPCA-ICPSO-SVM, KPCA-CPSO-SVM and
N-KPCA-GA-SVM model, KPCA was applied to extract
feature, which held the principal features and abandoned the
subordinate and noise data. N-RBF kernels were adopted
for SVM. ICPSO, CPSO and GA were used to optimize the
parameters (C, σ, ε) of SVM, respectively. In the other SVM
models, RBF kernels were used as the kernel functions of
SVM. The parameters of all optimization algorithms were
chosen as follows: population size: 50, maximal iteration:
200. In KPCA-ICPSO-SVM model: Cmax = 300, Wmax =
0.9Wmin = 0.4, Cmax = 2.0, Cmin = 1.4, H = 1. In KPCA-
CPSO-SVM model: Cmax = 300, Wmax = 0.9Wmin = 0.4,
C1 = 1.5, C2 = 1.7. In N-KPCA-GA-SVM, the proba-
bilities of crossover and mutation were set to 0.8 and 0.05,
respectively. The parameters σ, ε and C of Single-SVM were
randomly selected, while the parameters of the other SVM
models were obtained by the corresponding optimization
algorithm. Through 30 simulation experiments, the parame-
ters (C, σ, ε) of SVMs are shown in Table 2. In RBFNN
model, RBFNN had four-layer ANN, with 5 input neurons,
with two hidden layers with 20 and 30 neurons each, and
5 output neurons. The experiment results among different
algorithms are listed in Table 3.

The performance comparisons of all models in detection
rate (DR), false alarm rate (FAR), the correlation coefficient
(CC), the training time (TrD) and testing time (TeD) are
shown in Figs. 4, 5, 6, 7, 8.

As shown in Table 3 and Figs. 4, 5, 6, 7, 8, we can
see that the performance of KPCA-ICPSO-SVM, KPCA-
CPSO-SVM, N-KPCA-GA-SVM, KPCA-GA-SVM, PCA-
GA-SVM, PCA-PSO-SVM and CPSO-SVM was better than
Single-SVM. The reason is that the parameters of Single-
SVM are randomly selected, while the parameters of the
other SVM are obtained by the corresponding optimization

1 2 3 4 5 6 7 8 9 10
70

75

80

85

90

95

100

Testing Set

D
et

ec
ti

on
 R

at
e 

(%
) KPCA-ICPSO-SVM

KPCA-CPSO-SVM

N-KPCA-GA-SVM

KPCA-GA-SVM

PCA-GA-SVM

PCA-PSO-SVM

CPSO-SVM

Single-SVM

RBFNN

Fig. 4 Comparison of detection rate

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Testing Set

F
al

se
 A

la
rm

 R
at

e 
(%

) KPCA-ICPSO-SVM

KPCA-CPSO-SVM

N-KPCA-GA-SVM

KPCA-GA-SVM

PCA-GA-SVM

PCA-PSO-SVM

CPSO-SVM

Single-SVM

RBFNN

Fig. 5 Comparison of false alarm rate

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

Testing Set

C
or

re
la

ti
on

 C
oe

ff
ic

ie
nt

KPCA-ICPSO-SVM

KPCA-CPSO-SVM

N-KPCA-GA-SVM

KPCA-GA-SVM

PCA-GA-SVM

PCA-PSO-SVM

CPSO-SVM

Single-SVM

RBFNN

Fig. 6 Comparison of correlation coefficient

algorithm. SVM classifier for intrusion detection using PCA,
KPCA to extract feature has a good performance in DR, FAR,
CC and runtime than that without feature extraction. Further-
more, results also show that KPCA is better than PCA. The
reason lies in the fact that KPCA can provide more addi-
tional discriminatory information for improving classifica-
tion performance than PCA, and dimension reduction can
improve the generalization performance and running time
of SVM classifier. We can also see that Single-SVM needs
longer training time, because it has to do cross-judging and
more training. RBFNN also obtains good classification accu-
racy, but RBFNN requires large amounts of training data, and
needs to adjust the parameters of the hidden activation func-
tion, the parameters are determined by experience or using
the optimum method to tune the network parameters and con-
necting weights. In addition, Table 3 and Figs. 4, 5, 6, 7, 8 can
also see that the overall performance of KPCA-ICPSO-SVM
model is better than the other models for intrusion detection.
The above results show that ICPSO plays some role in DR,
FAR and CC, and N-RBF also plays some role in saving the
training and testing time.

The above experiments have not considered the attacks
of different kinds. To further analyze the detection perfor-
mance of KPCA-ICPSO-SVM on unknown attacks, we gave
the following experiment. In the experiment, we select sam-
ples randomly from the KDD CUP1999 datasets, 6,092 of
which were chosen as training datasets and 5,890 of which
as the testing datasets. Comparing KPCA-ICPSO-SVM
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Fig. 7 Comparison of training time

Fig. 8 Comparison of testing time

with KPCA-CPSO-SVM, N-KPCA-GA-SVM, KPCA-GA-
SVM, CPSO-SVM and RBFNN in the experiment, and
counted the accuracy rates (Acc) and testing time (TeD)
of these models on the attacks of all categories, where
Acc = (TP + TN)/(TP + TN + FP + FN). The compar-
isons of experimental results in 30 simulation experiments
are given in Table 4.

As shown in Table 4, we can see that all models show high
detection rates on forecasting normal behaviors, and the first
three kinds of models have the higher the accuracy rates and
the less testing time on predicting the attacks of Probing
and DoS. However, the results for detecting attacks of U2R
and R2L are all unsatisfactory. In general, the accuracy rates
and testing time of KPCA-ICPSO-SVM on attacks of all
categories is better than the other five models.

5 Conclusions

In this paper, a Novel hybrid KPCA SVM with ICPSO model
is proposed for intrusion detection. In the KPCA-ICPSO-
SVM model, KPCA is adopted to extract the principal fea-

tures of the intrusion detection data, and multi-layer SVM
classifier is employed to estimate whether the action is an
attack. N-RBF kernel function is employed to shorten the
training time and improve the performance of SVM classifi-
cation model, ICPSO is proposed to select suitable parame-
ters for SVM classifier, which introduces chaos optimiza-
tion and premature judgment and processing mechanism.
The experimental results show that the classification accu-
racies of the proposed KPCA-ICPSO-SVM model are supe-
rior to those of SVM classifiers whose parameters are ran-
domly selected, and SVM classifier by feature extraction
using KPCA can achieve better generalization performance
than that without feature extraction. The reason lies in the
fact that KPCA can explore higher order information of the
original inputs. The test results indicate that the proposed
method shows more excellent detection performance for
intrusion detection, and also saves a lot of training and testing
time.

For future work, we will focus on how to improve the
detection rate on predicting attacks, especially the attacks of
U2R and R2L. And research some other optimization algo-
rithm for SVM parameters optimization.
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Table 4 Comparisons of the
detection performance of
various categories

Models Categories

Normal Probing Dos U2R R2L

KPCA-ICPSO-SVM

TeD (s) 2.462 1.634 6.093 1.826 1.385
Acc (%) 98.134 96.652 94.291 74.453 73.944

KPCA-CPSO-SVM

TeD (s) 4.133 3.046 8.029 4.115 3.728

Acc (%) 96.242 94.794 93.181 72.675 72.553

N-KPCA-GA-SVM

TeD (s) 5.037 3.621 7.737 5.314 4.115

Acc (%) 96.046 94.492 93.079 72.436 72.257

KPCA-GA-SVM

TeD (s) 5.485 4.267 8.712 5.679 4.926

Acc (%) 94.863 93.857 91.622 71.849 71.638

CPSO-SVM

TeD (s) 8.372 6.986 11.213 8.268 7.131

Acc (%) 94.263 93.292 90.324 69.438 70.871

RBFNN

TeD (s) 13.952 11.326 15.687 12.469 11.913

Acc (%) 93.384 88.497 85.962 67.235 66.687

Acknowledgments This work was supported in part by the National
Natural Science Foundation of China under Grant 61373063 and
61233011, Science and Technology Department of Hunan Province of
China under Grant 2012SK4046 and 2013FJ4217, and Research Foun-
dation of Education Bureau of Hunan Province of China under Grant
13C086. And the authors are grateful to the referees for their suggestions
and comments.

References

Chen ZG, Ren HD, Du XJ (2008) Minimax probability machine clas-
sifier with feature extraction by kernel PCA for intrusion detection.
In: Proceedings of WiCOM08, pp 1–4

Chimphlee W, Addullah AH, Sap MNM et al (2006) Anomaly-based
intrusion detection using fuzzy rough clustering. In: Proceedings of
ICHIT06, pp 329–334

Ding M, Tian Z, Xu H (2009) Adaptive kernel principal analysis for
online feature extraction. Proc World Acad Sci Eng Technol 59:288–
293

Eskin E (2000) Anomaly detection over noisy data using learned prob-
ability distributions. In: Proceedings of ICML2000, pp 255–262

Fei R, Hu L, Liang H (2008) Using density-based incremental clustering
for anomaly detection. In: Proceedings of CSSE08, pp 986–989

Horng SJ, Su MY, Chen YH et al (2011) A novel intrusion detection
system based on hierarchical clustering and support vector machines.
Expert Syst Appl 38:306–313

Hsu CW, Chang CC, Lin C J (2010) A practical guide to sup-
port vector classification. http://www.csie.ntu.edu.tw/~cjlin/papers/
guide/guide.pdf. Accessed 2 December 2011

Hu W, Liao Y, Vemuri V (2003) Robust support vector machines
for anomaly detection in computer security. In: Proceedings of
ICMLA03, pp 23–24

Jolliffe IT (1986) Principle component Analysis. Springer, New York

Kavitha B, Karthikeyan S, Maybell PS (2012) An ensemble design of
intrusion detection system for handling uncertainty using neutro-
sophic logic classifier. Knowl Based Syst 28:88–96

Khan L, Awad M, Thuraisingham B (2007) A new intrusion detection
system using support vector machines and hierarchical clustering.
Int J Very Large Data Bases 16:507–521

Kolias C, Kambourakis G, Maragoudakis M (2011) Swarm intelligence
in intrusion detection: a survey. Comput Secur 30:625–642

Kuang FJ, Xu WH, Zhang SY et al (2012) A novel approach of KPCA
and SVM for intrusion detection. J Comput Inform Syst 8(8):3237–
3244

Kuang FJ, Xu WH, Zhang SY (2014) A novel hybrid KPCA and SVM
with GA model for intrusion detection. Appl Soft Comput 18:178–
184

Lee JH, Lee JH, Sohn SG, et al (2008) Effective value of decision tree
with KDD 99 intrusion detection datasets for intrusion detection
system. In: Proceedings of ICACT08, pp 1170–1175

Li B, Jiang WS (1997) Chaos optimization method and its application.
Control Theory Appl 14(4):613–615

Peddabachigari S, Abraham A, Grosan C (2007) Modeling intrusion
detection system using hybrid intelligent systems. J Netw Comput
Appl 30(1):114–132

Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analy-
sis as a Kernel eigenvalue problem. Neural Comput 10(5):1299–1319

Shafi K, Abbass HA (2009) An adaptive genetic based signature learn-
ing system for intrusion detection. Expert Syst Appl 36(10):12036–
12043

Shon T, Kim Y, Lee C, Moon J (2005) A machine learning framework
for network anomaly detection using SVM and GA. In: Proceedings
of IWIAS05, pp 176–183

Srinoy S (2007) Intrusion detection model based on particle swarm opti-
mization and support vector machine. In: Proceedings of CISDA07,
pp 186–192

Srivastava D, Bhambhu L (2010) Data classification using support vec-
tor machine. J Theor Appl Inf Technol 12(1):1–7

123

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


SVM by combining KPCA and ICPSO for intrusion detection

Stolfo S J, Fan W, Prodromidis A, et al (1999) KDD Cup
1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html. Accessed 22 December 2011

Tsai CF, Hsu YF, Lin CY, Lin WY (2009) Intrusion detection by
machine learning: a review. Expert Syst Appl 36:11994–12000

Tsai CF, Lin CY (2010) A triangle area based nearest neighbors
approach to intrusion detection. Pattern Recognit 43(1):222–229

Wang J, Hong X, Ren R, Li T (2009) A real-time intrusion detection
system based on PSO-SVM. In: Proceedings of IWISA09, pp 319–
321

Wang G, Hao JX, Ma J, Huang LH (2010) A new approach to intru-
sion detection using artificial neural networks and fuzzy clustering.
Expert Syst Appl 37:6225–6232

Wang W, Battiti R (2006) Identifying intrusions in computer networks
with principal component analysis. In: Proceedings of ARES06, pp
270–279

Wu SX, Banzhaf W (2010) Use of computational intelligence in intru-
sion detection systems: a review. Appl Soft Comput 10(1):1–35

Yang P, Zhu QS (2011) Finding key attribute subset in dataset for outlier
detection. Knowl Based Syst 24(2):269–274

Zhang MH, Li G (2012) Network intrusion detection based on least
squares support vector machine and chaos particle swarm optimiza-
tion algorithm. J Converg Inf Technol 7(4):169–173

Zhang Z, Shen H (2005) Application of online-training SVMs for real-
time intrusion detection with different considerations. Comput Com-
mun 28(12):1428–1442

123

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	2 (EI soft computing)收录情况
	2 (SCI) A novel SVM by combining.pdf
	A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection
	Abstract 
	1 Introduction
	2 Related work and contributions
	2.1 Kernel principal component analysis
	2.2 SVM classification model
	2.3 N-RBF kernel function for SVM model
	2.4 ICPSO algorithm
	2.4.1 Particle swarm optimization algorithm
	2.4.2 ICPSO algorithm

	2.5 Optimizing the parameters of SVM model with ICPSO

	3 Proposed SVM model for intrusion detection
	3.1 Intrusion detection types and normalized
	3.2 Intrusion detection based on proposed SVM model
	3.3 Proposed intrusion detection model implementation

	4 Experimental results and discussions
	4.1 Experimental description
	4.2 Experiments of KPCA-ICPSO-SVM

	5 Conclusions
	Acknowledgments
	References



